OpenEdv-开源电子网

 找回密码
 立即注册
正点原子全套STM32/Linux/FPGA开发资料,上千讲STM32视频教程免费下载...
查看: 3021|回复: 3

STM32关于GPIO的详细介绍

[复制链接]

4

主题

14

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
210
金钱
210
注册时间
2016-8-11
在线时间
65 小时
发表于 2017-3-4 16:39:10 | 显示全部楼层 |阅读模式
  多一点点的理解,多一点点的感知,仅供参考!
        (1)    GPIO_Mode_AIN 模拟输入
(2)GPIO_Mode_IN_FLOATING 浮空输入

(3)GPIO_Mode_IPD 下拉输入
(4)GPIO_Mode_IPU 上拉输入

(5)GPIO_Mode_Out_OD 开漏输出

(6)GPIO_Mode_Out_PP 推挽输出
(7)GPIO_Mode_AF_OD 复用开漏输出
(8)GPIO_Mode_AF_PP 复用推挽输出

GPIO_Speed_10MHz 最高输出速率10MHz
GPIO_Speed_2MHz 最高输出速率
2MHz
GPIO_Speed_50MHz 最高输出速率50MHz
                     1、          上拉输入(GPIO_Mode_IPU)
上拉输入就是信号进入芯片后加了一个上拉电阻,再经过施密特触发器转换成0、1信号,读取此时的引脚电平为高电平;
2、          下拉输入(GPIO_Mode_IPD)
下拉输入就是信号进入 芯片后加了一个下拉电阻,再经过施密特触发器转换成0、1信号,读取此时的引脚电平为低电平;
3、          模拟输入(GPIO_Mode_AIN)
信号进入后不经过上拉电阻或者下拉电阻,关闭施密特触发器,经由另一线路把电压信号传送到片上外设模块。比如传送给ADC模块,由ADC采集电压信号。所以可以理解为模拟输入的信号是未经处理的信号,是原汁原味的信号。虽然我也知道这样表达不准确。
4、          浮空输入(GPIO_Mode_IN_FLOATING)
信号进入芯片内部后,既没有接上拉电阻也没有接下拉电阻,经由触发器输入。配置成这个模式后,用电压变量引脚电压为1点几伏,这是个不确定值。由于其输入阻抗比较大,一般把这种模式用于标准的通讯协议,比如IIC、USART的等。
对于刚入门的新手,我想这几个概念是必须得搞清楚的,平时接触的最多的也就是推挽输出、开漏输出、上拉输入这三种,但一直未曾对这些做过归纳。因此,在这里做一个总结:
推挽输出:可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源低定。
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。
详细理解:
   
   123.jpg
  如图所示,推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经VT3拉出。这样一来,输出高低电平时,VT3 一路和 VT5 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).
开漏形式的电路有以下几个特点:
1.    利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up MOSFETGNDIC内部仅需很下的栅极驱动电流。
2.    一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的沿的速度 。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。)
3.    OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。
4.    可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2CSMBus等总线判断总线占用状态的原理。补充:什么是“线与”?:
在一个结点(线), 连接一个上拉电阻到电源 VCC VDD n NPN NMOS 晶体管的集电极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体管饱和, 这个结点(线)就被拉到地线电平上. 因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS), 晶体管就会饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑. 如果这个结点后面加一个反相器, 就是或 OR 逻辑.
其实可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为0,只有都为高电平时,与的结果才为逻辑1
关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:

图
该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。
浮空输入:对于浮空输入,一直没找到很权威的解释,只好从以下图中去理解了
   QQ截图20170304163302.jpg
由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下,IO的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。
上拉输入/下拉输入/模拟输入:这几个概念很好理解,从字面便能轻易读懂。
复用开漏输出、复用推挽输出:可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用)
最后总结下使用情况:
STM32中选用IO模式
1 浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1
2)带上拉输入_IPU——IO内部上拉电阻输入
3)带下拉输入_IPD—— IO内部下拉电阻输入
4 模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电
5)开漏输出_OUT_OD ——IO输出0GNDIO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51IO双向功能
6)推挽输出_OUT_PP ——IO输出0-GND IO输出1 -VCC,读输入值是未知的
7)复用功能的推挽输出_AF_PP ——片内外设功能(I2CSCL,SDA
8)复用功能的开漏输出_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS
STM32设置实例:
1)模拟I2C使用开漏输出_OUT_OD,接上拉电阻,能够正确输出01;读值时先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以读IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0)
2)如果是无上拉电阻,IO默认是高电平;需要读取IO的值,可以使用带上拉输入_IPU和浮空输入_IN_FLOATING和开漏输出_OUT_OD
正点原子逻辑分析仪DL16劲爆上市
回复

使用道具 举报

109

主题

5564

帖子

0

精华

资深版主

Rank: 8Rank: 8

积分
10566
金钱
10566
注册时间
2017-2-18
在线时间
1913 小时
发表于 2017-3-4 17:45:39 | 显示全部楼层
回复 支持 反对

使用道具 举报

3

主题

13

帖子

0

精华

初级会员

Rank: 2

积分
77
金钱
77
注册时间
2014-3-16
在线时间
9 小时
发表于 2017-3-22 23:26:41 | 显示全部楼层
帮顶 有帮助
回复 支持 反对

使用道具 举报

门外的猫 该用户已被删除
发表于 2017-3-26 15:57:53 | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则



关闭

原子哥极力推荐上一条 /2 下一条

正点原子公众号

QQ|手机版|OpenEdv-开源电子网 ( 粤ICP备12000418号-1 )

GMT+8, 2025-5-8 11:42

Powered by OpenEdv-开源电子网

© 2001-2030 OpenEdv-开源电子网

快速回复 返回顶部 返回列表