本帖最后由 YMC 于 2016-11-29 17:48 编辑
之前发了两个关于canopen的帖子,很多网友加我问了一些问题,居然还有很多网友对can的认识也是不清不楚的,讲设备地址的问题。其实也怪在一些CAN的文档上这些地方只是一概而过。就像Renesas 的can入门书上也是只说了一句话。 其实是很简单很浅的知识,对于CAN总线,与总线相连的单元是没有类似于“地址”的信息。下面把我之前看到的几个文章整理贴出来,很清楚的讲解了数据传送的过程。
1、CAN总线传送到数据是基于消息而不是地址的,每个消息用不同的编号表达(2.0A用11位、2.0B用29位)。 在CAN上进行简单传送而自定义传送协议时,要把所有需要传送的命令列出,然后根据传送的紧急程度(优先级)从高到低进行排序,然后把最高优先级的设定一个最低的编号、以此类推...最低优先级的设定最高的编号。因为CAN物理上是不分主从,所以当有几个站点同时发送而发生碰撞时,编号最低的将优先传送。 2、接收和发送消息 从总线上接收消息: 每个站点可能只对所有协议中的几个消息感兴趣,CAN初始化时,在过滤器中设置本站点需要接收的消息编号,这样一旦总线上有需要的消息将会自动接收,并产生中断,通知CPU收到新消息,CPU在中断程序中接收、处理。 发送消息到总线上: CAN初始化时设置本站点将来需要发送的消息编号,当运行过程中需要发送消息时,填入相关数据,设置相关消息对象发送。 CAN控制器内部一般设有32个消息对象,分成2组,分别各用一组寄存器来操作。一般一组用来接收过滤,另一组用来发送。

STM32普通型芯片的 CAN 有14组过滤器组(互联型有28组过滤器组) ,用以对接收到的帧进行过滤。每组过滤器包括了2个可配置的32位寄存器:CAN_FxR0和 CAN_FxR1。 a、对于过滤器组, 可以将其配置成屏蔽位模式, 这样 CAN_FxR0中保存的就是标识符匹配值,CAN_FxR1中保存的是屏蔽码。 即 CAN_FxR1中如果某一位为1,则CAN_FxR0中相应的位必须与收到的帧的标志符中的相应位吻合才能通过过滤器; CAN_FxR1中为0的位表示 : CAN_FxR0中的相应位可不必与收到的帧进行匹配。 b、过滤器组还可以被配置成标识符列表模式,此时 CAN_FxR0和 CAN_FxR1中的都是要匹配的标识符,收到的帧的标识符必须与其中的一个吻合才能通过过滤。 注意:CAN_FilterIdHigh 是指高16位 CAN_FilterIdLow 是低16位应该将需要得到的帧的和过滤器的设置值左对齐起。一般我们用的都是普通型的,所以在本文中可以说 STM32有14组过滤器组。
根据配置,每1组过滤器组可以有1个,2个或4个过滤器。这些过滤器相当于关卡,每当收到一条报文时,CAN 要先将收到的报文从这些过滤器上"过"一下,能通过的报文是有效报文,收进 FIFO,不能通过的是无效报文(不是发给"我"的报文),直接丢弃。所有的过滤器是并联的,即一个报文只要通过了一个过滤器,就是算是有效的。
详解每组过滤器组有两种工作模式:标识符列表模式和标识符屏蔽位模式。
在标识符列表模式下,收到报文的标识符必须与过滤器的值完全相等才能通过。
在标识符屏蔽位模式下,可以指定标识符的哪些位为何值时就算通过。这其实就是限定了处于某一范围的标识符能够通过。
在一组过滤器中,整组的过滤器都使用同一种工作模式。另外,每组过滤器中的过滤器宽度是可变的,可以是32位或16位。
按工作模式和宽度,一个过滤器组可以变成以下几中形式之一:
(1) 1个32位的屏蔽位模式的过滤器。
(2) 2个32位的列表模式的过滤器。
(3) 2个16位的屏蔽位模式的过滤器。
(4) 4个16位的列表模式的过滤器。
所有的过滤器是并联的,即一个报文只要通过了一个过滤器,就是算是有效的。每组过滤器组有两个32位的寄存器用于存储过滤用的"标准值",分别是 FxR1,FxR2。
在32位的屏蔽位模式下:有1个过滤器。FxR2用于指定需要关心哪些位,FxR1用于指定这些位的标准值。
在32位的列表模式下: 有2个过滤器。FxR1指定过滤器0的标准值,收到报文的标识符只有跟 FxR1完全相同时,才算通过。FxR2指定过滤器1的标准值。
在16位的屏蔽位模式下:有2个过滤器。FxR1配置过滤器0,其中,[31-16]位指定要关心的位,[15-0]位指定这些位的标准值。FxR2配置过滤器1,其中,[31-16]位指定要关心的位,[15-0]位指定这些位的标准值。
在16位的列表模式下: 有4个过滤器。FxR1的[15-0]位配置过滤器0,FxR1的[31-16]位配置过滤器1。FxR2的[15-0]位配置过滤器2,FxR2的[31-16]位配置过滤器3。
STM32的 CAN 有两个 FIFO,分别是 FIFO0和 FIFO1。为了便于区分,下面 FIFO0写作FIFO_0,FIFO1写作 FIFO_1。
每组过滤器组必须关联且只能关联一个 FIFO。复位默认都关联到 FIFO_0。所谓“关联”是指假如收到的报文从某个过滤器通过了,那么该报文会被存到该过滤器相连的 FIFO。
从另一方面来说,每个 FIFO 都关联了一串的过滤器组,两个 FIFO 刚好瓜分了所有的过滤器组。
每当收到一个报文,CAN 就将这个报文先与 FIFO_0关联的过滤器比较: 如果被匹配,就将此报文放入 FIFO_0中。如果不匹配, 再将报文与 FIFO_1关联的过滤器比较, 如果被匹配,该报文就放入 FIFO_1中。如果还是不匹配,此报文就被丢弃。 每个 FIFO 的所有过滤器都是并联的,只要通过了其中任何一个过滤器,该报文就有效。
如果一个报文既符合 FIFO_0的规定,又符合 FIFO_1的规定,显然,根据操作顺序,它只会放到 FIFO_0中。每个 FIFO 中只有激活了的过滤器才起作用,换句话说,如果一个 FIFO 有20个过滤器,
但是只激话了5个,那么比较报文时,只拿这5个过滤器作比较。一般要用到某个过滤器时,在初始化阶段就直接将它激活。需要注意的是,每个 FIFO 必须至少激活一个过滤器,它才有可能收到报文。如果一个过滤器都没有激活,那么是所有报文都报废的。
一般的,如果不想用复杂的过滤功能, FIFO 可以只激活一组过滤器组,且将它设置成 32位的屏蔽位模式,两个标准值寄存器(FxR1,FxR2)都设置成0。这样所有报文均能通过。(STM32提供的例程里就是这么做的! )
STM32 CAN 中,另一个较难理解的就是过滤器编号。
过滤器编号用于加速 CPU 对收到报文的处理。收到一个有效报文时, CAN 会将收到的报文以及它所通过的过滤器编号,一起存入接收邮箱中。CPU 在处理时,可以根据过滤器编号,快速的知道该报文的用途,从而作出相
应处理。不用过滤器编号其实也是可以的, 这时候 CPU 就要分析所收报文的标识符, 从而知道报文的用途。
由于标识符所含的信息较多,处理起来就慢一点了。
STM32使用以下规则对过滤器编号:
(1) FIFO_0和 FIFO_1的过滤器分别独立编号,均从0开始按顺序编号。
(2) 所有关联同一个FIFO的过滤器,不管有没有被激活,均统一进行编号。
(3) 编号从0开始,按过滤器组的编号从小到大,按顺序排列。
(4) 在同一过滤器组内,按寄存器从小到大编号。FxR1配置的过滤器编号小,FxR2配置的过滤器编号大。
(5) 同一个寄存器内,按位序从小到大编号。[15-0]位配置的过滤器编号小,[31-16]位配置的过滤器编号大。
(6) 过滤器编号是弹性的。 当更改了设置时,每个过滤器的编号都会改变。但是在设置不变的情况下,各个过滤器的编号是相对稳定的。
这样,每个过滤器在自己在 FIFO 中都有编号。
在 FIFO_0中,编号从0 -- (M-1), 其中 M 为它的过滤器总数。
在 FIFO_1中,编号从0 -- (N-1),,其中 N 为它的过滤器总数。
一个 FIFO 如果有很多的过滤器,,可能会有一条报文, 在几个过滤器上均能通过,这时候,,这条报文算是从哪儿过来的呢?
STM32在使用过滤器时,按以下顺序进行过滤:
(1) 位宽为32位的过滤器,优先级高于位宽为16位的过滤器。
(2) 对于位宽相同的过滤器,标识符列表模式的优先级高于屏蔽位模式。
(3) 位宽和模式都相同的过滤器,优先级由过滤器号决定,过滤器号小的优先级高。
按这样的顺序,报文能通过的第一个过滤器,就是该报文的过滤器编号,被存入接收邮箱中。

CAN验收滤波器有2种工作模式:一种是一般模式;另一种被称为“FullCAN模式”。 在一般模式下,当CAN控制器的接收端收到一个完整的标识符时,它将通知接收验收滤波器。验收滤波器响应这个信号,读出CAN控制器编号和标识符大小(标准标识符ll位或扩展标识符29位);然后搜索LUT,查找匹配的标识符。如果找到匹配的标识符,则通知CAN控制器将接收的报文放入CAN控制器接收缓冲中;否则,放弃接收到的这一帧信息。 如果使能FullcAN模式,且CAN控制器报告产生的是一个标准标识符,则验收过滤器首先查询FullCAN标准标识符表,然后在FullCAN模式下处理接收。如果在FullCAN标准标识符表中没有找到匹配的ID,则依次查找下一个存在的表格,直到找到匹配者或查找表结束。一旦发现匹配的ID,就将接收到的报文放入特定的报文缓冲中而不是CAN控制器接收缓冲中,这个特定的缓冲位于验收滤波器的RAM中,而且是在LUT的最后部分。CPU可以在任何时候读取接收到的报文。

CAN滤波器 了解CAN总线的人都知道,CAN总线在的帧数据在总线上传送时,其它的CAN控制器是通过验收滤波来决定总线上的数据帧的ID是否和本节点相吻合,如果与本节点吻合,那么总线上的数据就被存入总线控制器的相应寄存器里,否则就抛弃该数据,从而也能够减轻总线控制器的工作量。换句话说,总线上数据帧的ID通过待接收节点的验收滤波后是吻合的,是可以被接收的。那么,总线控制器是如何进行验收滤波的呢?验收滤波分单滤波和双滤波。标准帧和扩展帧由于ID长度不同,它们的两种滤波也有所区别。这里我只重点举一个例子,因为只要理解了一种滤波方式,其它的滤波方式都是类似的,也很容易就理解了。 这里就说扩展帧的双滤波方式。所谓双滤波,就是有两次的滤波,但并非两次滤波都需要通过才双通过,两次滤波只要有一次滤波成功那么就默认滤波通过,可以接收数据了。 如上表所示,ACR寄存器是接收代码寄存器,AMR是接收屏蔽寄存器。ACR一般是需要与对应的ID相吻合的,但是如果AMR的相应位上设置为1的时候,ID的那一位数据可以不和AMR的相应位一样,也就是起到屏蔽的作用。 举个例子:如果ACR0=11101111,AMR0=00000000,那么要想通过验收滤波,必须ID.28-ID.21=ACR0=11101111。 如果AMR0=00010000,那么ID.28-ID.21=11111111时,也可以通过验收滤波,因为此时AMR0的第五位为1,也就是屏蔽了ACR0的第五位。所以ID的相应位可以不合ACR0一致。 在扩展帧的双滤波方式下,ACR0\ACR1分别对应ID.28-ID.13 ,ACR2\ACR3分别也对应ID.28-ID.13,这就达到了两次滤波的效果。 另外要说明的一点是:通过验收滤波后符合节点要求的数据就存储到节点的相应寄存器里,其它的帧信息并不做存储。

论坛内讲解can过滤器的知识:
CAN总线过滤器学习很好的一点资料 :http://www.openedv.com/forum.php?mod=viewthread&tid=20666&highlight=can%D7%DC%CF%DF

积赞的一些资料和书籍: |