OpenEdv-开源电子网

 找回密码
 立即注册
正点原子全套STM32/Linux/FPGA开发资料,上千讲STM32视频教程免费下载...
查看: 7800|回复: 1

为计算器做前期准备,分享一个好资料:float与double的范围和精度.

[复制链接]

530

主题

11万

帖子

34

精华

管理员

Rank: 12Rank: 12Rank: 12

积分
165309
金钱
165309
注册时间
2010-12-1
在线时间
2108 小时
发表于 2012-6-5 17:32:34 | 显示全部楼层 |阅读模式
fficeffice" />



float
double的范围和精度

1 范围

floatdouble的范围是由指数的位数来决定的。

float的指数位有8位,而double的指数位有11位,分布如下:

float

1bit(符号位)

8bits(指数位)

23bits(尾数位)

double

1bit(符号位)

11bits(指数位)

52bits(尾数位)

在数学中,特别是在计算机相关的数字(浮点数)问题的表述中,有一个基本表达法[1]

value of floating-point = significand x base ^ exponent , with sign  F.1

 

译为中文表达即为:

(浮点)数值尾数×底数^指数,(附加正负号)-------- F.2

于是,float的指数范围为-127~128,而double的指数范围为-1023~1024,并且指数位是按补码的形式来划分的。其中负指数决定了浮点数所能表达的绝对值最小的数;而正指数决定了浮点数所能表达的绝对值最大的数,也即决定了浮点数的取值范围。

float的范围为-2^128 ~ +2^128,也即-3.40E+38 ~ +3.40E+38double的范围为-2^1024 ~ +2^1024,也即-1.79E+308 ~ +1.79E+308

2 精度

floatdouble的精度是由尾数的位数来决定的。浮点数在内存中是按科学计数法来存储的,其整数部分始终是一个隐含着的“1”,由于它是不变的,故不能对精度造成影响。

float2^23 = 8388608,一共七位,这意味着最多能有7位有效数字,但绝对能保证的为6位,也即float的精度为6~7位有效数字;

double2^52 = 4503599627370496,一共16位,同理,double的精度为15~16位。

单精度类型(float)和双精度类型(double)存储

C 语言和C#语言中,对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用32bit, double数据占用64bit,我们在声明一个变量float f= 2.25f的时候,是如何分配内存的呢?如果胡乱分配,那世界岂不是乱套了么,其实不论是float还是double在存储方式上都是遵从IEEE的规范 的,float遵从的是IEEE R32.24 ,double 遵从的是R64.53

    无论是单精度还是双精度在存储中都分为三个部分:

  1. 符号位(Sign) : 0代表正,1代表为负
  2. 指数位(Exponent:用于存储科学计数法中的指数数据,并且采用移位存储
  3. 尾数部分(Mantissa):尾数部分

其中float的存储方式如下图所示:




    而双精度的存储方式为:




     R32.24
R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.25* ,120.5可以表示为:1.205* , 这些小学的知识就不用多说了吧。而我们傻蛋计算机根本不认识十进制的数据,他只认识01,所以在计算机存储中,首先要将上面的数更改为二进制的科学计数 法表示,8.25用二进制表示可表示为1000.01,我靠,不会连这都不会转换吧?那我估计要没辙了。120.5用二进制表示为:1110110.1用 二进制的科学计数法表示1000.01可以表示为1.0001* ,1110110.1可以表示为1.1101101* ,任何一个数都的科学计数法表示都为1.xxx* , 尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了 24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点, 24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以 指数部分的存储采用移位存储,存储的数据为元数据+127,下面就看看8.25120.5在内存中真正的存储方式。

     首先看下8.25,用二进制的科学计数法表示为:1.0001*

按照上面的存储方式,符号位为:0,表示为正,指数位为:3+127=130 ,位数部分为,8.25的存储方式如下图所示:




    而单精度浮点数120.5的存储方式如下图所示:



    那 么如果给出内存中一段数据,并且告诉你是单精度存储的话,你如何知道该数据的十进制数值呢?其实就是对上面的反推过程,比如给出如下内存 数据:0100001011101101000000000000,首先我们现将该数据分段,0 10000 0101 110 1101 0000 0000 0000 0000,在内存中的存储就为下图所示:



根据我们的计算方式,可以计算出,这样一组数据表示为:1.1101101* =120.5

而双精度浮点数的存储和单精度的存储大同小异,不同的是指数部分和尾数部分的位数。所以这里不再详细的介绍双精度的存储方式了,只将120.5的最后存储方式图给出,大家可以仔细想想为何是这样子的

 

下面我就这个基础知识点来解决一个我们的一个疑惑,请看下面一段程序,注意观察输出结果

            float f = 2.2f;

            double d = (double)f;

            Console.WriteLine(d.ToString("0.0000000000000"));

            f = 2.25f;

            d = (double)f;

            Console.WriteLine(d.ToString("0.0000000000000"));

可 能输出的结果让大家疑惑不解,单精度的2.2转换为双精度后,精确到小数点后13位后变为了2.2000000476837,而单精度的 2.25转换为双精度后,变为了2.2500000000000,为何2.2在转换后的数值更改了而2.25却没有更改呢?很奇怪吧?其实通过上面关于两 种存储结果的介绍,我们已经大概能找到答案。首先我们看看2.25的单精度存储方式,很简单 0 1000 0001 001 0000 0000 0000 0000 0000,2.25的双精度表示为:0 100 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000,这样2.25在进行强制转换的时候,数值是不会变的,而我们再看看2.2呢,2.2用科学计数法表示应该为:将十进制的小数转换为二进制的小数 的方法为将小数*2,取整数部分,所以0.282=0.4,所以二进制小数第一位为0.4的整数部分00.4×2=0.8,第二位为0,0.8*2= 1.6,第三位为10.6×2 = 1.2,第四位为10.2*2=0.4,第五位为0,这样永远也不可能乘到=1.0,得到的二进制是一个无限循环的排列 00110011001100110011... ,对于单精度数据来说,尾数只能表示24bit的精度,所以2.2float存储为:



    但是这样存储方式,换算成十进制的值,却不会是2.2的,应为十进制在转换为二进制的时候可能会不准确,如2.2,而double类型的数 据也存在同样的问题,所以在浮点数表示中会产生些许的误差,在单精度转换为双精度的时候,也会存在误差的问题,对于能够用二进制表示的十进制数据,如 2.25,这个误差就会不存在,所以会出现上面比较奇怪的输出结果。

注意:最后作者对2.25的表示以及2.2 的表示是有误的,如果前面你认真看了,就应该知道哪里有问题

 

 

float与double的范围和精度.docx

48.91 KB, 下载次数: 351

我是开源电子网www.openedv.com站长,有关站务问题请与我联系。
正点原子STM32开发板购买店铺http://openedv.taobao.com
正点原子官方微信公众平台,点击这里关注“正点原子”
正点原子逻辑分析仪DL16劲爆上市
回复

使用道具 举报

7

主题

38

帖子

0

精华

初级会员

Rank: 2

积分
86
金钱
86
注册时间
2014-3-11
在线时间
0 小时
发表于 2014-4-14 15:23:07 | 显示全部楼层
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则



关闭

原子哥极力推荐上一条 /2 下一条

正点原子公众号

QQ|手机版|OpenEdv-开源电子网 ( 粤ICP备12000418号-1 )

GMT+8, 2024-11-22 16:30

Powered by OpenEdv-开源电子网

© 2001-2030 OpenEdv-开源电子网

快速回复 返回顶部 返回列表