OpenEdv-开源电子网

 找回密码
 立即注册
正点原子全套STM32/Linux/FPGA开发资料,上千讲STM32视频教程免费下载...
查看: 7221|回复: 31

细节决定成败,用心学习STM32

[复制链接]

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
发表于 2015-7-25 11:15:41 | 显示全部楼层 |阅读模式

STM32看门狗总结

调原子哥的开发板一年多,基本上能用,但是对于STM32某些基本外设的工作机理还不甚明了。借此暑假的机会对各个外设的功能做一个简短的总结,在提高自己基础知识的同时,也给其他同学提供一些参考。

先来看门狗部分的内容。

看门狗部分内容当中较难理解的是窗口看门狗,其中窗口值设置以及如何引发复位更是很难搞懂,因此从根本上分析一下窗口看门狗的工作原理,而与其有关的中断则略过。

stm32有两个看门狗,独立看门狗和窗口看门狗,其实两者的功能是类似的,只是喂狗的限制时间不同。独立看门狗有自己独立的40Khz时钟,不存在使能问题;而窗口看门狗使用的是PCLK1时钟,需要先使能时钟。以下是关于看门狗的具体说明:

①、独立看门狗是限制喂狗时间在0-x内,x由你的相关寄存器决定。喂狗的时间不能过晚。

②、窗口看门狗,所以称之为窗口就是因为其喂狗时间是一个有上下限的范围内,你可以通过设定相关寄存器,设定其上限时间和下限时间。喂狗的时间不能过早也不能过晚。

显而易见的是,独立看门狗比较简单,容易理解。

这里,主要对窗口看门狗的详细含义作具体说明。

看门狗的上窗口就是配置寄存器WWDG->CFR里设定的W[6:0];下窗口是0x40;当窗口看门狗的计数器在上窗口之外,或是低于下窗口值都会产生复位。如上图所讲,当计数器的值递减到0x3f的计数时间内未进行喂狗操作,则会触发复位;其次,如果在计数器值递减到配置寄存器WWDG->CFR里设定的W[6:0]之前进行喂狗操作,也会触发复位。所以,在使用窗口看门狗时,要设定两个值,一个就是窗口看门狗的上窗口值,即配置寄存器WWDG->CFR里设定的W[6:0],另一个就是递减计数器的计数初值。

再结合上图中的逻辑关系分析一下:

如图中所示标号,①③表示与门,②表示非或门;

1、当T[6:0]>W[6:0]时,比较器输出的值是1,如果此时重装载WWDG_CR,所以③就会输出1,②的输出也肯定是1,又因为使能了窗口看门狗,所以WWDG_CR的第7WDGA也为1,即与门①的输出是1,此时会触发复位。简单的概括来说,就是当递减计数器的值在递减到上窗口值W[6:0]之前进行喂狗操作(即重装载WWDG_CR,会触发看门狗复位。

2、当T[6:0]的第6位变为0时,即T[6:0]的值变为0x3f,此时②的输出肯定为1,而WDGA也为1,因此①的输出是1,会触发看门狗复位。简单的概括来说,就是当递减计数器的值在到达0x3f时仍未进行喂狗操作(即重装载WWDG_CR),同样会触发看门狗复位。

 

上窗口的值可以只有设定,7位二进制数最大只可以设定为127(0x7f),最小又必须大于其下窗口的0x40,所以其取值范围为64~127(0x40~0x7f),否则不能保证窗口。

配置寄存器WWDG->CFR寄存器中的[8:7]两个位的设置为计数器设定时钟分频系数,确定这个计数器可以定时的时间范围,从而确定窗口的时间范围。

窗口看门狗的时钟来自于PCLK1,在时钟配置中,其频率为外部时钟经倍频器后的二分频时钟,即为36Mhz,如上图STM32时钟树所示。

窗口看门狗的超时公式如下:

36M时钟下窗口看门狗的最小最大超时表:

表中数据的具体计算如下所示:

①、当T[5:0]全部取0时,7位计数器的值是0x40,此时距离复位值只能计数一次,在此时间之内必须执行喂狗操作,否则触发复位。

从而可知各个WDGTB值下的最小超时时间,如WDGTB=0时,

Twwdg=4096×2^0×1/36 (us)=113 us,依次可计算出其他WDGTB值下的最小超时时间。

②、当T[5:0]全部取1时,7位计数器的值是0x7f,此时距离复位值递减计数0x40(0x3f+1),在此时间之内执行喂狗操作可避免复位。

从而可知各个WDGTB值下的最大超时时间,如WDGTB=0时,

Twwdg=4096×2^0×64/36 (us)=7281.7 us,依次可计算出其他WDGTB值下的最大超时时间。

 

一直在路上,一直在成长。
正点原子逻辑分析仪DL16劲爆上市
回复

使用道具 举报

530

主题

11万

帖子

34

精华

管理员

Rank: 12Rank: 12Rank: 12

积分
165540
金钱
165540
注册时间
2010-12-1
在线时间
2117 小时
发表于 2015-7-25 11:56:41 | 显示全部楼层
我是开源电子网www.openedv.com站长,有关站务问题请与我联系。
正点原子STM32开发板购买店铺http://openedv.taobao.com
正点原子官方微信公众平台,点击这里关注“正点原子”
回复 支持 反对

使用道具 举报

39

主题

598

帖子

0

精华

高级会员

Rank: 4

积分
875
金钱
875
注册时间
2013-12-18
在线时间
41 小时
发表于 2015-7-25 12:28:23 | 显示全部楼层
cool啊,这种分享帖子很棒
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-7-25 13:37:02 | 显示全部楼层
回复【2楼】正点原子:
---------------------------------
原子哥,我会都总结出来的,给个cool啊
一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-7-25 13:37:46 | 显示全部楼层
回复【3楼】w417074951:
---------------------------------
哈哈,谢谢,共同交流,我也是没有搞清基本原理,网上查了很多资料。
一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

81

主题

1002

帖子

0

精华

论坛大神

Rank: 7Rank: 7Rank: 7

积分
1876
金钱
1876
注册时间
2014-9-10
在线时间
208 小时
发表于 2015-7-25 14:41:16 | 显示全部楼层
谢谢分享。。。。
小小蜗牛
回复 支持 反对

使用道具 举报

72

主题

2711

帖子

2

精华

论坛大神

Rank: 7Rank: 7Rank: 7

积分
3505
金钱
3505
注册时间
2014-8-4
在线时间
696 小时
发表于 2015-7-25 14:49:02 | 显示全部楼层
调理清晰,图文搭配相辅相成,赞一个
以我资质之鲁钝,当尽平心静气、循序渐进、稳扎稳打之力。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-7-26 10:41:29 | 显示全部楼层

STM32 系列的CPU,有多达8个定时器,其中TIM1TIM8是能够产生三对PWM互补输出的高级定时器,常用于三相电机的驱动,它们的时钟由APB2的输出产生。其它6个为普通定时器,时钟由APB1的输出产生。

通用定时器的定义:STM32的通用定时器是一个通过可编程预分频器(PSC)驱动的16位自动装载计数器(CNT)构成。

功用:STM32的通用定时器可以被用于测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和PWM)等。

分频系数:决定定时器的时基,即最小定时时间。

定时器的时钟来源:

从图中可以看出,定时器的时钟不是直接来自APB1APB2,而是来自于输入为APB1APB2的一个倍频器。当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为24816)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。

  

举一个例子说明。假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;

当预分频系数=1时,APB1=36MHzTIM2~7的时钟频率=36MHz(倍频器不起作用)

当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=36MHz

由于APB1不仅给通用定时器提供时钟,还给其他外设提供时钟,因此也体现了APB1 rescaler设计的灵活性。

 

对自动重装载寄存器赋值,TIM_Period的大小实际上表示的是需要经过TIM_Period次计数后才会发生一次更新或中断。对TIM_Prescaler的设置,直接决定定时器的时钟频率。通俗点说,就是一秒钟能计数多少次。比如算出来的时钟频率是2000,也就是一秒钟会计数2000次,而此时如果TIM_Period设置为4000,即4000次计数后就会中断一次。由于时钟频率是一秒钟计数2000次,因此只要2秒钟,就会中断一次。发生中断时间=(TIM_Prescaler+1)* (TIM_Period+1)/FLK。

同样需要注意的,一进入中断服务程序,第一步要做的,就是清除掉中断标志位。以便下次中断服务函数的顺利执行。

注意:APB1 rescaler后得到的是通用定时器的时钟源,再次基础上进行TIM_Prescaler的设置就得到通用定时器具体的时钟频率啦。所以小伙伴们千万不要把文中定时器中经常提到的76MHz时钟以及由(TIM_Prescaler+1)*/FLK计算得到的时钟频率搞混淆啦。

当然,计数器的计数模式比较简单,这里没有就其进行详细的说明。

一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-7-27 08:06:43 | 显示全部楼层

今天有同学问我PWM到底咋工作的?为啥这样啊?为啥啊?直接把我问蒙了。所以今天就来总结一些通用定时器产生PWM输出。

①、PWM主要就是控制频率和占空比的:这两个因素分别通过两个寄存器控制:TIMX_ARRTIMX_CCRXARR寄存器就是自动重装寄存器,也就是计数器记到这个数以后清零再开始计,这样PWM的频率就是tim_frequency/TIMX_ARR-1)。在计数时会不停的和CCRX寄存器中的数据进行比较,如果小于的话是高电平或者低电平,计数值大于CCRX值的话电平极性反相。所以这也就控制了占空比。

②、TIM3-CNT中的数据从0计数到ARR中的值,当计数到TIM3_CCRx接收到的数据大小时,由高电平变为低电平,当CNT中的数值增加到ARR寄存器设定的值时就自动清零,从0重新开始计数,并产生一个计数溢出事件,从0计数到ARR值的这段时间是PWM的周期。设置CCRx的值用来改变PWM的占空比。

③、TIM3-CNT的值与TIM3_CCRx中的数据是自动比较,TIM3-CNT的值与TIM3_CCRx中的数据相等时,PWM是自动产生跳变的,此过程是硬件实现的,在原子开发板的例程中找不到有关二者进行比较的代码,所以不要问在软件中是如何实现的,因为我找了很长时间没找到。

④端口重映射

为了优化64脚或100脚封装的外设数目,可以把一些复用功能重新映射到其他引脚上。设置复用重映射和调试I/O配置寄存器(AFIO_MAPR)实现引脚的重新映射。这时,复用功能不再映射到它们的原始分配上。(注意:重定义的引脚是固定的,不是想重定义到哪个引脚就可以到哪个引脚的!重映像一般只适用于100144脚的封装!(具体看哪个外设))。

STM32上有很多I/O口,也有很多的内置外设想I2C,ADC,ISP,USART等 ,为了节省引出管脚,这些内置外设基本上是与I/O口共用管脚的,也就是I/O管脚的复用功能。但是STM32还有一特别之处就是:很多复用内置的外设的I/O引脚可以通过重映射功能,从不同的I/O管脚引出,即复用功能的引脚是可通过程序改变的。但这些重映射并不是任意的,只有有些引脚可以重映射.具体哪些引脚stm32参考手册上的GPIOAFIO章节上有。一般是定时器,通信接口等数字系统的引脚可以重映射,adc,dac,时钟这种与模拟量有关的不可以。

简单的说STM32IO3个功能一个是默认的,一个是复用,一个是重映射功能(这个其实也属于复用),如果配置成复用,则将使用第2个功能,如果配置成复用,同时相应的重映射也配置了,则将使用第3个功能。

STM32的部分重映射实例:

 

  

一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

15

主题

37

帖子

0

精华

初级会员

Rank: 2

积分
99
金钱
99
注册时间
2015-5-19
在线时间
16 小时
发表于 2015-7-27 09:42:44 | 显示全部楼层
等养肥了再看
回复 支持 反对

使用道具 举报

6

主题

40

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
215
金钱
215
注册时间
2015-7-26
在线时间
36 小时
发表于 2015-7-27 13:54:02 | 显示全部楼层
cool、、
回复 支持 反对

使用道具 举报

11

主题

193

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
425
金钱
425
注册时间
2013-3-19
在线时间
20 小时
发表于 2015-7-28 12:03:16 | 显示全部楼层
赞贴是一种美德
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-7-28 14:23:07 | 显示全部楼层
回复【12楼】精神不死6530:
---------------------------------
哈哈,加油!
一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-7-28 15:11:03 | 显示全部楼层

输入捕获实验

捕获是如何实现的?与定时器有什么关系?它为什么就能够捕获到呢?

先入为主:可以利用定时器捕获某些IO口的高电平脉宽,脉宽时间可以通过串口打印得到。

输入捕获模式可以用来测量脉冲宽度或者测量频率。STM32定时器除了TIM6TIM7,其他的都具有输入捕获功能。STM32的输入捕获,简单的说就是通过检测TIMx_CHx上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值存放到对应的通道的捕获/比较寄存器(TIMx_CCRx)里面,完成一次捕获。

捕获模式与比较模式的理解:

捕获模式的原理是选定的输入引脚发生选定的脉冲出发沿的时候,则该时刻定时器的计数值TIMx_CNT将被保存,同时产生中断(TIMx_CNT的值不会与任何东西进行比较)。该功能最常用的的就是测量一个外来脉冲的脉宽。

比较模式的原理是当CCRx寄存器中设定的值与定时器计数器值相等的时候,相关引脚发生电平跳变,同时产生中断。该功能常应用于产生一个一定脉宽的PWM波形。

数字滤波器由一个事件计数器组成,它记录到N个事件后会产生一个输出的跳变: 这个N可以取值具体参考中文手册,意思是说:我采样高电平,只有连续采样到N个电平是高电平的话我才认为是有效的高电平,低于N个我就认为是无效的。

PWM输入捕获模式是输入捕获模式的特例,自己理解如下

1. 每个定时器有四个输入捕获通道IC1IC2IC3IC4。且IC1 IC2一组,IC3 IC4一组。并且可是设置管脚和寄存器的对应关系。

2. 同一个TIx输入映射了两个ICx信号。

3. 这两个ICx信号分别在相反的极性边沿有效。

4. 两个边沿信号中的一个被选为触发信号,并且从模式控制器被设置成复位模式。

5. 当触发信号来临时,被设置成触发输入信号的捕获寄存器,捕获“一个PWM周期(即连续的两个上升沿或下降沿)”,它等于包含TIM时钟周期的个数(即捕获寄存器中捕获的为TIM的计数个数n)。

6. 同样另一个捕获通道捕获触发信号和下一个相反极性的边沿信号的计数个数m,即(即高电平的周期或低电平的周期)

7. 由此可以计算出PWM的时钟周期和占空比了

    frequency=fTIM时钟频率)/n

    duty cycle=(高电平计数个数/n),

    若m为高电平计数个数,则duty cycle=m/n

    若m为低电平计数个数,则duty cycle=n-m/n

注:因为计数器为16位,所以一个周期最多计数65535个,所以测得的 最小频率= TIM时钟频率/65535

测量脉宽的理解:

输入捕获的原理是,定时器正常计数运行,当外部脉冲到来时,将定时器计数值存起来,当下次脉冲到来时,求出这两次计数值差值,即为这两段脉冲的周期。例如,定时器计数到10,外部脉冲到来,使用last_time_CH1存储10,下次脉冲到来,此时定时器计数值运行到110,使用this_time_CH1存储110,之后做差,tmp16_CH1存储差值100,由于定时器运行于100KHZ10us计数值增加一次,所以脉冲周期为100*10=1000us=1ms,即为1KHZ。当然,定时器会溢出重装,此时需要将差值补偿运算,tmp16_CH1 = ((0xFFFF - last_time_CH1) + this_time_CH1);可测量的范围取决于定时器运行的频率,如果外部频率慢到当定时器整个计数一周后也没有触发两次,会发生溢出,此时计数值已不准确。所以定时器时钟配置取决于外部脉冲频率,应配置得当使得脉冲频率范围不致溢出。由于每次外部脉冲都会触发中断,尤其是四通道时,所以使用中断方式会略微占用CPU资源,使用DMA可以解决这一问题。

得到脉冲周期后,即可通过运算获得外部频率,进而测速。

一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-7-29 20:20:19 | 显示全部楼层

STM32的ADC采样(翻看网上内容总结)

难点:如何确定采样周期?如何配置相关寄存器?转换时间里的12.5是怎么来的?

一、基本概念:ADC转换就是输入模拟的信号量,单片机转换成数字量。读取数字量必须等转换完成后,完成一个通道的读取叫做采样周期。采样周期一般来说=转换时间+读取时间。而转换时间=采样时间+12.5个时钟周期。采样时间是你通过寄存器告诉stm32采样模拟量的时间,设置越长越精确。

 

STM32的ADC模块各个通道对应的IO

(注意:STM32F103系列最少都拥有2个ADC,STM32F103ZET6包含有3个ADC,STM32F103ZET6内部集成了12位的逐次逼近型模拟数字转换器,它有多大18个通道,可测量16个外部和2个内部信号源。)

二、规则组和注入组

STM32的ADC通道分为规则组和注入组。因为ADC转换模块只有一个ADC功能核心,它能够支持这么多通道的数据转换,用的是分时复用的方法。分组的目的是为了赋予特定的ADC通道优先权。

比如,ADCx_IN2被分配到规则组,ADCx_IN3被分配到注入组,在IN2通道进行数据转换的过程中,外部信号触发了IN3通道的转换,则ADC功能核心将暂停IN2的转换,转去执行IN3的转换,完成转换后在回来执行IN2的转换。由此可知,注入组的通道具有优先转换权,可以打断规则组通道正在进行的转换。

 

三、STM32 ADC 采样 频率的确定

①、可编程的通道采样时间

ADC 使用若干个ADC_CLK 周期对输入电压采样,采样周期数目可以通过

ADC_SMPR1 和ADC_SMPR2 寄存器中的SMP[2:0]位而更改。每个通道可以以

不同的时间采样。

总转换时间如下 计算:

TCONV = 采样时间+ 12.5 个周期

例如:

当ADCCLK=14MHz 和1.5 周期的采样时间

TCONV = 1.5 + 12.5 = 14 周期 = 1μs

 

转换时间里的12.5是怎么来的?

原子哥告诉我,ST固定死了的,咱们不用关心。

 

②、具体分析如下:

(1)我们的输入信号是50Hz (周期为20ms),初步定为1周期200个采样点,(注:一周期最少采20个点,即采样率最少为1k) ,每2个采样点间隔为 20ms /200 = 100 us

ADC可编程的通道采样时间我们选最小的 1.5 周期,则 ADC采样周期一周期大小为

100us /1.5=66us 。 ADC 时钟频率为 1/66us =15 KHz。

  ADC可编程的通道采样时间我们选71.5 周期,则 ADC采样周期一周期大小为

(100us /71.5) 。 ADC 时钟频率为 7.15MHz。

 

(2)接下来我们要确定系统时钟:我们 用的是 8M Hz 的外部晶振做时钟源(HSE),估计得 经过 LL倍频 LL 倍频系数分别为2的整数倍,最大72 MHz。为了 提高数据计算效率,我们把系统时钟定为72MHz,(PLL 9倍 频)。则PCLK2=72MHz,PCLK1=36MHz;

 

我们通过设置时钟配置寄存器(RCC_CFGR) 中 有 为ADC 时钟提供一个专用的可编程预分器,将PCLK2 8 分频后作为ADC 的时钟,则可 知ADC 时钟频率为 9MHz

        从手册可知: ADC 转换时间:

STM32F103xx 增强型产品:ADC 时钟为56MHz 时为1μs(ADC 时钟为72MHz 为1.17μs)

 (3)由以上分析可知:不太对应,我们重新对以上内容调整,提出如下两套方案:

 

方案一:我们的输入信号是50Hz (周期为20ms),初步定为1周期2500个采样点,(注:一周期最少采20个点,即采样率最少为1k) ,每2个采样点间隔为 20ms /2500 = 8 us

ADC可编程的通道采样时间我们选71.5 周期,则 ADC采样周期一周期大小为

8us /71.5 。 ADC 时钟频率约为 9 MHz。

将PCLK2 8 分频后作为ADC 的时钟,则可知ADC 时钟频率为 9MHz

 

方案二:我们的输入信号是50Hz (周期为20ms),初步定为1周期1000个采样点,(注:一周期最少采20个点,即采样率最少为1k) ,每2个采样点间隔为 20ms /1000= 20 us

ADC可编程的通道采样时间我们选239.5周期,则 ADC采样周期一周期大小为

20us /239.5 。 ADC 时钟频率约为 12 MHz。


一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

14

主题

1592

帖子

0

精华

资深版主

Rank: 8Rank: 8

积分
2622
金钱
2622
注册时间
2014-7-17
在线时间
350 小时
发表于 2015-7-29 22:39:41 | 显示全部楼层
谢谢分享。。。。。
回复 支持 反对

使用道具 举报

2

主题

8

帖子

0

精华

新手上路

积分
36
金钱
36
注册时间
2015-7-27
在线时间
0 小时
发表于 2015-7-30 16:50:18 | 显示全部楼层
谢谢楼主分享,我刚买的板子,学习中。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-7-30 19:14:59 | 显示全部楼层

STM32 DAC实验

基本原理:12位的DAC模块将测量用的基准电压(3.3V)分为4095份(3.3/4095),通过设定寄存器DAC_DHR12Rx(设定不同的对齐方式对应的寄存器有所不同)的值,可以得到输出电压的大小,其值为寄存器内值的大小乘以每一份的值(3.3/4095),结果就是希望输出的电压值大小。然后我们通过ADC采样,就可以把输出电压的值检测出来,并显示在LCD上。注意,这里参考电压的设置,VREF+接到3.3VVREF-接到0V

另外,DAC输出是受DORx寄存器直接控制的,但是不能直接往DORx寄存器写入数据,而是通过DHRx间接的传给DORx寄存器,实现对DAC输出的控制。

 

一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-8-1 16:36:16 | 显示全部楼层
转载自http://www.openedv.com/posts/list/56809.htm;jsessionid=0229B206CFB640FEC5131028B176EA4B


一、 GPIO模式配置  
  

1、输入/输出模式(参考stm32手册) 

2、GPIO输出模式下,几种速度的区别: 

(1). GPIO 引脚速度: GPIO_Speed_2MHz     (10MHz, 50MHz) ; 

    又称输出驱动电路的响应速度:(芯片内部在I/O口的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路,通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。) 

    可理解为: 输出驱动电路的带宽:即一个驱动电路可以不失真地通过信号的最大频率。 

(如果一个信号的频率超过了驱动电路的响应速度,就有可能信号失真。失真因素?) 

如果信号频率为10MHz,而你配置了2MHz的带宽,则10MHz的方波很可能就变成了正弦波。就好比是公路的设计时速,汽车速度低于设计时速时,可以平稳地运行,如果超过设计时速就会颠簸,甚至翻车。 

关键是: GPIO的引脚速度跟应用相匹配,速度配置越高,噪声越大,功耗越大。 

带宽速度高的驱动器耗电大、噪声也大,带宽低的驱动器耗电小、噪声也小。使用合适的驱动器可以降低功耗和噪声 

比如:高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。关键是GPIO的引脚速度跟应用匹配(推荐10倍以上?)。 

比如: 

① USART串口,若最大波特率只需115.2k,那用2M的速度就够了,既省电也噪声小。 

② I2C接口,若使用400k波特率,若想把余量留大些,可以选用10M的GPIO引脚速度。 

③ SPI接口,若使用18M或9M波特率,需要选用50M的GPIO的引脚速度。 

(2). GPIO的翻转速度指:输入/输出寄存器的0 ,1 值反映到外部引脚(APB2上)高低电平的速度.手册上指出GPIO最大翻转速度可达18MHz。 

@通过简单的程序测试,用示波器观察到的翻转时间:  是综合的时间,包括取指令的时间、指令执行的时间、指令执行后信号传递到寄存器的时间(这其中可能经过很多环节,比如AHB、APB、总线仲裁等),最后才是信号从寄存器传输到引脚所经历的时间。   

如:有上拉电阻,其阻值越大,RC延时越大,即逻辑电平转换的速度越慢,功耗越大。 

(3).GPIO 输出速度:与程序有关,(程序中写的多久输出一个信号)。 

2、GPIO口设为输入时,输出驱动电路与端口是断开,所以输出速度配置无意义。 

3、在复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式。 

4、所有端口都有外部中断能力。为了使用外部中断线,端口必须配置成输入模式。 

5、GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。 

 一般应用: 

模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电。 

浮空输入_IN_FLOATING ——可以做KEY识别,RX1 

开漏输出_Out_OD——应用于I2C总线; (STM32开漏输出若外部不接上拉电阻只能输出0) 

二. 管脚的复用功能 重映射 

1、复用功能:内置外设是与I/O口共用引出管脚(不同的功能对应同一管脚) 

STM32 所有内置外设的外部引脚都是与标准GPIO引脚复用的,如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。 

2、重映射功能:复用功能的引出脚可以通过重映射,从不同的I/O管脚引出,即复用功   能的引出脚位是可通过程序改变到其他的引脚上! 

直接好处:PCB电路板的设计人员可以在需要的情况下,不必把某些信号在板上绕一大圈完成联接,方便了PCB的设计同时潜在地减少了信号的交叉干扰。 

如:USART1: 0: 没有重映像(TX/PA9,RX/PA10); 1: 重映像(TX/PB6,RX/PB7)。 

(参考AFIO_MAPR寄存器介绍)[0,1为一寄存器的bit值] 

【注】 下述复用功能的引出脚具有重映射功能: 

  - 晶体振荡器的引脚在不接晶体时,可以作为普通I/O口 

  - CAN模块; - JTAG调试接口;- 大部分定时器的引出接口; - 大部分USART引出接口 

  - I2C1的引出接口;  - SPI1的引出接口; 

举例:对于STM32F103VBT6,47引脚为PB10,它的复用功能是I2C2_SCL和 USART3_TX,表示在上电之后它的默认功能为PB10,而I2C2的SCL和USART3的TX为它的复用功能;另外在TIM2的引脚重映射后,TIM2_CH3也成为这个引脚的复用功能。 

(1)要使用STM32F103VBT6的47、48脚的USART3功能,则需要配置47脚为复用推挽输出或复用开漏输出,配置48脚为某种输入模式,同时使能USART3并保持I2C2的非使能状态。 

(2)使用STM32F103VBT6的47脚作为TIM2_CH3,则需要对TIM2进行重映射,然后再按复用功能的方式配置对应引脚.
一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-8-2 11:22:04 | 显示全部楼层
在调节利用DMA向串口发送数据的过程中,必须在使能DMA,执行完发送数据的操作后再关闭DMA,否则串口将不能连续自动发送数据。只能在复位时进行发送,不复位则停止发送。
如图所示,添加关闭DMA的语句,则可实现连续发送:

在注释掉关闭DMA的语句后,则串口不能连续发送数据:


如有大神指导原因,可以在此留言,谢谢。
补充DMA相关的知识:
①、DMA的各个通道对应特定的外设,在使用时需要一一对应。
②、三种传输方式:外设->内存,内存->外设,内存->内存
③、由于DMA传输不需要CPU的参与。所以在调试的时候会发现,在我们单步停止的时候,串口依然不停地向外发送数据。(未经验证)
④、DMA实现数据转移是采用共享系统数据线来完成的,传输过程中涉及到源地址和目的地址,一次来决定数据转移的源头和目标。
⑤、DMA技术的弊端:因为DMA允许外设直接访问内存,从而形成对总线的独占。这在实时性强的硬实时系统的嵌入式开发中将会造成中断延时过长。这在实时性要求高的系统中,要注意了。
更多请看:http://blog.csdn.net/peasant_lee/article/details/5594753

一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

14

主题

38

帖子

0

精华

初级会员

Rank: 2

积分
143
金钱
143
注册时间
2015-4-9
在线时间
10 小时
发表于 2015-8-2 15:04:33 | 显示全部楼层
好贴,已经收藏了
从兴趣中学习知识
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-8-2 16:39:30 | 显示全部楼层

EEPROM和flash的区别(转)

rom最初不能编程,出厂什么内容就永远什么内容,不灵活。后来出现了prom,可以自己写入一次,要是写错了,只能换一片,自认倒霉。人类文明不断进步,终于出现了可多次擦除写入的EPROM,每次擦除要把芯片拿到紫外线上照一下,想一下你往单片机上下了一个程序之后发现有个地方需要加一句话,为此你要把单片机放紫外灯下照半小时,然后才能再下一次,这么折腾一天也改不了几次。历史的车轮不断前进,伟大的EEPROM出现了,拯救了一大批程序员,终于可以随意的修改rom中的内容了。

 

EEPROM的全称是“电可擦除可编程只读存储器”,即Electrically Erasable Programmable Read-Only Memory。是相对于紫外擦除的rom来讲的。但是今天已经存在多种EEPROM的变种,变成了一类存储器的统称。

 

狭义的EEPROM:

这种rom的特点是可以随机访问和修改任何一个字节,可以往每个bit中写入0或者1。这是最传统的一种EEPROM,掉电后数据不丢失,可以保存100年,可以擦写100w次。具有较高的可靠性,但是电路复杂/成本也高。因此目前的EEPROM都是几十千字节到几百千字节的,绝少有超过512K的。

 

flash:

flash属于广义的EEPROM,因为它也是电擦除的rom。但是为了区别于一般的按字节为单位的擦写的EEPROM,我们都叫它flash。

flash做的改进就是擦除时不再以字节为单位,而是以块为单位,一次简化了电路,数据密度更高,降低了成本。上M的rom一般都是flash。

 

flash分为nor flash和nand flash。nor flash数据线和地址线分开,可以实现ram一样的随机寻址功能,可以读取任何一个字节。但是擦除仍要按块来擦。

nand flash同样是按块擦除,但是数据线和地址线复用,不能利用地址线随机寻址。读取只能按页来读取。(nandflash按块来擦除,按页来读,norflash没有页)

由于nandflash引脚上复用,因此读取速度比nor flash慢一点,但是擦除和写入速度比nor flash快很多。nand flash内部电路更简单,因此数据密度大,体积小,成本也低。因此大容量的flash都是nand型的。小容量的2~12M的flash多是nor型的。

使用寿命上,nand flash的擦除次数是nor的数倍。而且nand flash可以标记坏块,从而使软件跳过坏块。nor flash 一旦损坏便无法再用。

 

因为nor flash可以进行字节寻址,所以程序可以在nor flash中运行。嵌入式系统多用一个小容量的nor flash存储引导代码,用一个大容量的nand flash存放文件系统和内核。

一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-8-3 09:01:29 | 显示全部楼层
分享FATFS 的几个函数用法 
FATFS 的几个函数用法: 
  
 FATFS *fs, fatfs; 
 fs = &fatfs; 
 f_mount(0, fs); 
 b = f_open(&infile,"SD.txt",FA_CREATE_NEW);    //创建新文件 
 f_close(&infile);    //关闭文件 
 b = f_open(&infile,"SD.txt", FA_WRITE);   //以写方式打开文件 
 f_puts((char *)buff2,&infile);  //文件内写入字符串 
 f_puts((char *)buff2,&infile);  //文件内写入字符串 
 f_puts((char *)buff2,&infile); //文件内写入字符串 
 f_close(&infile);  //关闭文件 
 b = f_open(&infile,"SD.txt",FA_WRITE);   //以写方式打开文件 
 b = infile.fsize;       //获得文件大小 
 f_lseek(&infile,b);  //移动文件指针 
 f_puts(buff3,&infile); //从文件内数据的最后写入字符串 
 f_close(&infile);    //关闭文件 
 b = f_open(&infile,"SD.txt",FA_READ);  //以读方式打开文件 
 f_read(&infile,buff1,50,&rc);  //从文件内读50字节赋给 buff1数组 
 f_close(&infile);  //关闭文件 
// f_unlink("SD.txt");  //删除文件

一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

2

主题

8

帖子

0

精华

新手上路

积分
36
金钱
36
注册时间
2015-7-27
在线时间
0 小时
发表于 2015-8-3 14:47:09 | 显示全部楼层
谢谢分享 果断收藏
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-8-3 20:34:58 | 显示全部楼层
移植完文件系统,向SD卡中写txt文件并读取文件内容
    //写文件
    printf("write file test......\r\n");
    res = f_open(&fdst, "0:/test.txt", FA_CREATE_ALWAYS | FA_WRITE);
    if(res != FR_OK)
{
     printf("open file error: %d\r\n",res);
    }
else
{
res = f_write(&fdst, textFileBuffer, sizeof(textFileBuffer), &bw);               /* Write it to the dst file */
if(res == FR_OK)
{
printf("write data ok! %d\r\n",bw);
}
else
{
printf("write data error: %d\r\n",res);
}
/*close file */
f_close(&fdst);
    }
//读文件
printf("read file test......\r\n");
res = f_open(&fsrc, "0:/test.txt", FA_OPEN_EXISTING | FA_READ);
    if(res != FR_OK)
{
     printf("open file error: %d\r\n",res);
    }
else
{
        res = f_read(&fsrc, buffer, sizeof(textFileBuffer), &br);     /* Read a chunk of src file */
        if(res==FR_OK)
{
             printf("read data num: %d\r\n",br);
             printf("%s\n\r",buffer);
        }
else
{
             printf("read file error: %d\r\n",res);
        }
        /*close file */
        f_close(&fsrc);
    }
另外,向SD卡写数据的时候可以通过  f_printf(&fdst,"\r\n"); //换行 
一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-8-4 15:14:27 | 显示全部楼层
新手必看,关于ARM的22个常用概念!
1.ARM中一些常见英文缩写解释
MSB:最高有效位;
LSB:最低有效位;
AHB:先进的高性能总线;
VPB:连接片内外设功能的VLSI外设总线;
EMC:外部存储器控制器;
MAM:存储器加速模块;
VIC:向量中断控制器;
SPI:全双工串行接口;
CAN:控制器局域网,一种串行通讯协议;
PWM:脉宽调制器;
ETM:嵌入式跟踪宏;
CPSR:当前程序状态寄存器;
SPSR:程序保护状态寄存器;

2.MAM 使用注意事项:
答:当改变 MAM 定时值时,必须先通过向 MAMCR 写入 0 来关闭 MAM,然后将新值写入 MAMTIM。最后,将需要的操作模式的对应值写入MAMCR,再次打开MAM。
对于低于 20MHz 的系统时钟,MAMTIM 设定为 001。对于 20MHz 到 40MHz 之间的系统时钟,建议将Flash访问时间设定为2cclk,而在高于40MHz的系统时钟下,建议使用3cclk。郭老师qq754634522

3.VIC 使用注意事项
答:如果在片内RAM当中运行代码并且应用程序需要调用中断,那么必须将中断向量重新映射到Flash地址0x0。这样做是因为所有的异常向量都位于地址0x0及以上。通过将寄存器MEMMAP(位于系统控制模块当中)配置为用户RAM模式来实现这一点。用户代码被连接以便使中断向量表装载到0x4000 0000。

4. ARM启动代码设计
答:ARM启动代码直接面对处理器内核和硬件控制器进行编程,一般使用汇编语言。启动代码一般包括:
        中断向量表
        初始化存储器系统
        初始化堆栈初始化有特殊要求的端口、设备
        初始化用户程序执行环境
        改变处理器模式
        呼叫主应用程序

5.IRQ 和 FIQ 之间的区别
答:IRQ和FIQ是ARM处理器的两种编程模式。IRQ是指中断模式,FIR是指快速中断模式。对于 FIQ 你必须尽快处理你的事情并离开这个模式。IRQ 可以被 FIQ 所中断,但 IRQ 不能中断 FIQ。为了使 FIQ 更快,所以这种模式有更多的影子寄存器。FIQ 不能调用 SWI(软件中断)。FIQ 还必须禁用中断。如果一个 FIQ 例程必须重新启用中断,则它太慢了,并应该是 IRQ 而不是 FIQ。

6.ARM处理器对异常中断的响应过程
答:ARM处理器对异常中断的响应过程如下所述:
        保存处理器当前状态、中断屏蔽位以及各条件标志位;
        设置当前程序状态寄存器CPSR中的相应位;
        将寄存器lr_mode设置成返回地址;
        将程序计数器值PC,设置成该异常中断的中断向量地址,跳转到相应异常中断处执行。

7.ARM指令与Thumb指令的区别
答:在ARM体系结构中,ARM指令集中的指令是32位的指令,其执行效率很高。对于存储系统数据总线为16位的应用系统,ARM体系提供了Thumb指令集。Thumb指令集是对ARM指令集的一个子集重新编码得到的,指令长度为16位。通常在处理器执行ARM程序时,称处理器处于ARM状态;当处理器执行Thumb程序时,称处理器处于Thumb状态。Thumb指令集并没有改变ARM体系地层的程序设计模型,只是在该模型上加上了一些限制条件。Thumb指令集中的数据处理指令的操作数仍然为32位,指令寻址地址也是32位的。

8.什么是ATPCS 
答:为了使单独编译的C语言程序和汇编程序之间能够相互调用,必须为子程序之间的调用规定一定的规则。ATPCS就是ARM程序和Thumb程序中子程序调用的基本规则。这些规则包括寄存器使用规则,数据栈的使用规则,参数的传递规则等。

9.ARM程序和Thumb程序混合使用的场合
答:通常,Thumb程序比ARM程序更加紧凑,而且对于内存为8位或16位的系统,使用Thumb程序效率更高。但是,在下面一些场合下,程序必须运行在ARM状态,这时就需要混合使用ARM和Thumb程序。
强调速度的场合,应该使用ARM程序;
有些功能只能由ARM程序完成。如:使用或者禁止异常中断;
当处理器进入异常中断处理程序时,程序状态切换到ARM状态,即在异常中断处理程序入口的一些指令是ARM指令,然后根据需要程序可以切换到Thumb状态,在异常中断程序返回前,程序再切换到ARM状态。
ARM处理器总是从ARM状态开始执行。因而,如果要在调试器中运行Thumb程序,必须为该Thumb程序添加一个ARM程序头,然后再切换到Thumb状态,执行Thumb程序。

10.ARM处理器运行模式
答:ARM微处理器支持7种运行模式,分别为:
        用户模式(usr):ARM处理器正常的程序执行状态;
        快速中断模式(fiq):用于高速数据传输或通道管理;
        外部中断模式(irq):用于通用的中断处理;
        管理模式(svc):操作系统使用的保护模式;
        数据访问终止模式(abt):当数据或指令预取终止时进入该模式,用于虚拟存储及存储保护;
        系统模式(sys):运行具有特权的操作系统任务;
        未定义指令中止模式(und):当未定义指令执行时进入该模式,可用于支持硬件协处理器的软件仿真。

11.ARM体系结构所支持的异常类型
答:ARM体系结构所支持的异常和具体含义如下(圈里面的数字表示优先级):
复位①:当处理器的复位电平有效时,产生复位异常,程序跳转到复位异常处执行(异常向量:0x0000,0000);
未定义指令⑥:当ARM处理器或协处理器遇到不能处理的指令时,产生为定义异常。可使用该异常机制进行软件仿真(异常向量:0x0000,0004);
软件中断⑥:有执行SWI指令产生,可用于用户模式下程序调用特权操作指令。可使用该异常机制实现系统功能调用(异常向量:0x0000,0008);
指令预取中止⑤:若处理器的预取指令的地址不存在,或该地址不允许当前指令访问,存储器会向处理器发出中止信号,当预取指令被执行时,才会产生指令预取中止异常(异常向量:0x0000,000C);
数据中止②:若处理器数据访问的指令的地址不存在,或该地址不允许当前指令访问,产生数据中止异常(异常向量:0x0000,0010);
IRQ④(外部中断请求):当处理器的外部中断请求引脚有效,且CPSR中的I位为0时,产生IRQ异常。系统的外设可以该异常请求中断服务(异常向量:0x0000,0018);
FIQ③(快速中断请求):当处理器的快速中断请求引脚有效,且CPSR中的F位为0时,产生FIQ异常(异常向量:0x0000,001C)。
说明:其中异常向量0x0000,0014为保留的异常向量。

12.ARM体系结构的存储器格式
答:ARM体系结构的存储器格式有如下两种:
    大端格式:字数据的高字节存储在低地址中,字数据的低字节存放在高地址中;
    小端格式:与大端存储格式相反,高地址存放数据的高字节,低地址存放数据的低字节。

13.ARM寄存器总结:
ARM有16个32位的寄存器(r0到r15)。
r15充当程序寄存器PC,r14(link register)存储子程序的返回地址,r13存储的是堆栈地址。
ARM有一个当前程序状态寄存器:CPSR。
一些寄存器(r13,r14)在异常发生时会产生新的instances,比如IRQ处理器模式,这时处理器使用r13_irq和r14_irq
ARM的子程序调用是很快的,因为子程序的返回地址不需要存放在堆栈中。

14.存储器重新映射(Remap)的原因:
    使Flash存储器中的FIQ处理程序不必考虑因为重新映射所导致的存储器边界问题;
     用来处理代码空间中段边界仲裁的SRAM和Boot Block向量的使用大大减少;
     为超过单字转移指令范围的跳转提供空间来保存常量。

     ARM中的重映射是指在程序执行过程中通过写某个功能寄存器位操作达到重新分配其存储器地址空间的映射。一个典型的应用就是应用程序存储在Flash/ROM中,初始这些存储器地址是从0开始的,但这些存储器的读时间比SRAM/DRAM长,造成其内部执行频率不高,故一般在前面一段程序将代码搬移到SRAM/DRAM中去,然后重新映射存储器空间,将相应SRAM/DRAM映射到地址0,重新执行程序可达到高速运行的目的。

15.存储异常向量表中程序跳转使用LDR指令,而不使用B指令的原因:
    LDR指令可以全地址范围跳转,而B指令只能在前后32MB范围内跳转;
   芯片具有Remap功能。当向量表位于内部RAM或外部存储器中,用B指令不能跳转到正确的位置。

16.锁相环(PLL)注意要点:
    PLL在芯片复位或进入掉电模式时被关闭并旁路,在掉电唤醒后不会自动恢复PLL的设定;
    PLL只能通过软件使能;
    PLL在激活后必须等待其锁定,然后才能连接;
    PLL如果设置不当将会导致芯片的错误操作。

17.ARM7与ARM9的区别:
    ARM7内核是0.9MIPS/MHz的三级流水线和冯&S226;诺伊曼结构;ARM9内核是五级流水线,提供1.1MIPS/MHz的哈佛结构。
    ARM7没有MMU,ARM720T是MMU的;ARM9是有MMU的,ARM940T只有Memory protection unit.不是一个完整的MMU。
    ARM7TDMI提供了非常好的性能——功耗比。它包含了Thumb指令集快速乘法指令和ICE调试技术的内核。ARM9的时钟频率比ARM7更高,采用哈佛结构区分了数据总线和指令总线。

18.VIC的基本操作如下:
答:设置IRQ/FIQ中断,若是IRQ中断则可以设置为向量中断并分配中断优先级,否则为非向量IRQ。然后可以设置中断允许,以及向量中断对应地址或非向量中断默认地址。当有中断后,若是IRQ中断,则可以读取向量地址寄存器,然后跳转到相应的代码。当要退出中断时,对向量地址寄存器写0,通知VIC中断结束。当发生中断时,处理器将会切换处理器模式,同时相关的寄存器也将会映射。

19.使用外部中断注意
    把某个引脚设置为外部中断功能后,该引脚为输入模式,由于没有内部上拉电阻,所以必须外接一个上拉电阻,确保引脚不被悬空;
    除了引脚连接模块的设置,还需要设置VIC模块,才能产生外部中断,否则外部中断只能反映在EXTINT寄存器中;
    要使器件进入掉电模式并通过外部中断唤醒,软件应该正确设置引脚的外部中断功能,再进入掉电模式。

20.UART0的基本操作方法
        设置I/O连接到UART0;
        设置串口波特率(U0DLM、U0DLL);
        设置串口工作模式(U0LCR、U0FCR);
        发送或接收数据(U0THR、U0RBR);
        检查串口状态字或等待串口中断(U0LSR)。

21.I2C的基本操作方法
答:I2C主机基本操作方法:
        设置I2C管脚连接;
        设置I2C时钟速率(I2SCLH、I2SCLL);
        设置为主机,并发送起始信号(I2CONSET的I2EN、STA位为1,AA位为0);
        发送从机地址(I2DAT),控制I2CONSET发送;
        判断总线状态(I2STAT),进行数据传输控制;
        发送结束信号(I2CONSET)。
   I2C从机基本操作方法:
        设置I2C管脚连接;
        设置自身的从机地址(I2ADR);
        使能I2C(I2CONSET的I2EN、AA位为1);
        判断SI位或等待I2C中断,等待主机操作;
        判断总线状态I2STAT,进行数据传输控制。
22.   PWM基本操作方法:
        连接PWM功能管脚输出,即设置PINSEL0、PINSEL1;
        设置PWM定时器的时钟分频值(PWMPR),得到所要的定时器时钟;
        设置比较匹配控制(PWMMCR),并设置相应比较值(PWMMRx);
        设置PWM输出方式并允许PWM输出(PWMPCR)及锁存使能控制(PWMLER);
        设置PWMTCR,启动定时器,使能PWM;
        运行过程中要更改比较值时,更改之后要设置锁存使能。
        使用双边沿PWM输出时,建议使用PWM2、PWM4、PWM6;使用单边PWM输出时,在PWM周期开始时为高电平,匹配后为低电平,使用PWMMR0作为PWM周期控制,PWMMRx作为占空比控制。
在网上看到了这篇好文章,跟大家分享一下,希望对大家的学习有所帮助!
一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-8-5 16:38:40 | 显示全部楼层
STM32F10x系列的MCU复位后,PA13/14/15 & PB3/4默认配置为JTAG功能。有时我们为了充分利用MCU I/O口的资源,会把这些端口设置为普通I/O口。具体方法如下:

GPIO_PinRemapConfig(GPIO_Remap_SWJ_Disable, ENABLE);
// 改变指定管脚的映射 GPIO_Remap_SWJ_Disable SWJ 完全禁用(JTAG+SW-DP)

GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable , ENABLE);
// 改变指定管脚的映射 GPIO_Remap_SWJ_JTAGDisable ,JTAG-DP 禁用 + SW-DP 使能

GPIO_Configuration(); // 配置使用的 GPIO 口

 

然后在GPIO_Configuration()中添加如下代码:

//74HC595端口定义
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);

//TLV5610端口定义
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);

注意:不要忘记在RCC_Configuration()中开启AFIO时钟,

//AFIO时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);

一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

20

主题

138

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
346
金钱
346
注册时间
2012-10-11
在线时间
136 小时
发表于 2015-8-5 22:26:42 | 显示全部楼层
收藏了,谢谢分享!
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-8-6 10:13:22 | 显示全部楼层
I2C深入详解

IIC总结.pdf

327.29 KB, 下载次数: 217

一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

72

主题

2711

帖子

2

精华

论坛大神

Rank: 7Rank: 7Rank: 7

积分
3505
金钱
3505
注册时间
2014-8-4
在线时间
696 小时
发表于 2015-8-14 15:09:38 | 显示全部楼层
回复【29楼】济世良驹:
---------------------------------
总结的很好

问一下楼主,如果我想把文档粘到其他地方备份,除了注明本页链接,是否需要缴纳/办理其他费用/手续,哈哈
以我资质之鲁钝,当尽平心静气、循序渐进、稳扎稳打之力。
回复 支持 反对

使用道具 举报

19

主题

217

帖子

0

精华

中级会员

Rank: 3Rank: 3

积分
427
金钱
427
注册时间
2015-4-1
在线时间
34 小时
 楼主| 发表于 2015-8-14 15:45:45 | 显示全部楼层
回复【30楼】龙之谷:
---------------------------------
当然不需要啦,我的有些也是复制的,共同学习,开源万岁,加油
一直在路上,一直在成长。
回复 支持 反对

使用道具 举报

22

主题

109

帖子

1

精华

中级会员

Rank: 3Rank: 3

积分
367
金钱
367
注册时间
2015-5-28
在线时间
0 小时
发表于 2015-8-15 10:40:52 | 显示全部楼层
顶一个 
的确是学习32  细节决定成败

我更建议 你把程序中遇到没有读懂的语句理解后 分享给大家

有个小小的建议  
还有最好是有计划地分享一个模块  好比于  GPIO    相关  外部中断相关 
标题清楚些  方便 别人查看   
如果说 把外设都弄会了  在整体分享
再不玩命努力,你就老了
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则



关闭

原子哥极力推荐上一条 /2 下一条

正点原子公众号

QQ|手机版|OpenEdv-开源电子网 ( 粤ICP备12000418号-1 )

GMT+8, 2025-6-17 02:19

Powered by OpenEdv-开源电子网

© 2001-2030 OpenEdv-开源电子网

快速回复 返回顶部 返回列表