刚刚完成测试的ADC+串口发送程序,和大家分享一下。本程序在ALIENTEK MiniSTM32开发板上验证。此程序参考开发板例程。
#include "stm32f10x_lib.h"
#include "sys.h"
#include "delay.h"
#define ADC_CH0 0 //通道0
#define ADC_CH1 1 //通道1
#define ADC_CH2 2 //通道2
#define ADC_CH3 3 //通道3
void Adc_Init(void);
void USART_Initaize(u32 pclk2,u32 bound);
void Uart1_PutChar(u8 ch);
void Uart1_PutString(u8 *Buf, u8 Len);
u16 Get_Adc(u8 ch) ;
int main(void)
{
u16 adcx;
u16 temp;
u8 table[5];
u8 *p;
p = table;
Stm32_Clock_Init(9); ;
delay_init(72);
USART_Initaize(72,9600);
Adc_Init();
while(1)
{
adcx=Get_Adc(ADC_CH0);
temp=adcx*330/4096;
adcx = temp;
table[0]=adcx / 100 + 0x30;
table[1]='.';
table[2]=adcx % 100/10 + 0x30;
table[3]= adcx %10 + 0x30;
table[4]='V';
Uart1_PutString(p,5);
Uart1_PutString("\r\n",2);
delay_ms(100);
}
}
//初始化ADC
//这里我们仅以规则通道为例
//我们默认将开启通道0~3
void Adc_Init(void)
{
//先初始化IO口
RCC->APB2ENR|=1<<2; //使能PORTA口时钟
GPIOA->CRL&=0XFFFF0000;//PA0 1 2 3 anolog输入
//通道10/11设置
RCC->APB2ENR|=1<<9; //ADC1时钟使能
RCC->APB2RSTR|=1<<9; //ADC1复位
RCC->APB2RSTR&=~(1<<9);//复位结束
RCC->CFGR&=~(3<<14); //分频因子清零
//SYSCLK/DIV2=12M ADC时钟设置为12M,ADC最大时钟不能超过14M!
//否则将导致ADC准确度下降!
RCC->CFGR|=2<<14;
ADC1->CR1&=0XF0FFFF; //工作模式清零
ADC1->CR1|=0<<16; //独立工作模式
ADC1->CR1&=~(1<<8); //非扫描模式
ADC1->CR2&=~(1<<1); //单次转换模式
ADC1->CR2&=~(7<<17);
ADC1->CR2|=7<<17; //软件控制转换
ADC1->CR2|=1<<20; //使用用外部触发(SWSTART)!!! 必须使用一个事件来触发
ADC1->CR2&=~(1<<11); //右对齐
ADC1->SQR1&=~(0XF<<20);
ADC1->SQR1&=0<<20; //1个转换在规则序列中 也就是只转换规则序列1
//设置通道0~3的采样时间
ADC1->SMPR2&=0XFFFFF000;//通道0,1,2,3采样时间清空
ADC1->SMPR2|=7<<9; //通道3 239.5周期,提高采样时间可以提高精确度
ADC1->SMPR2|=7<<6; //通道2 239.5周期,提高采样时间可以提高精确度
ADC1->SMPR2|=7<<3; //通道1 239.5周期,提高采样时间可以提高精确度
ADC1->SMPR2|=7<<0; //通道0 239.5周期,提高采样时间可以提高精确度
ADC1->CR2|=1<<0; //开启AD转换器
ADC1->CR2|=1<<3; //使能复位校准
while(ADC1->CR2&1<<3); //等待校准结束
//该位由软件设置并由硬件清除。在校准寄存器被初始化后该位将被清除。
ADC1->CR2|=1<<2; //开启AD校准
while(ADC1->CR2&1<<2); //等待校准结束
//该位由软件设置以开始校准,并在校准结束时由硬件清除
}
//获得ADC值
//ch:通道值 0~3
u16 Get_Adc(u8 ch)
{
//设置转换序列
ADC1->SQR3&=0XFFFFFFE0;//规则序列1 通道ch
ADC1->SQR3|=ch;
ADC1->CR2|=1<<22; //启动规则转换通道
while(!(ADC1->SR&1<<1));//等待转换结束
return ADC1->DR; //返回adc值
}
void USART_Initaize(u32 pclk2,u32 bound)
{
float temp;
u16 mantissa;
u16 fraction;
temp=(float)(pclk2*1000000)/(bound*16);//得到USARTDIV
mantissa=temp; //得到整数部分
fraction=(temp-mantissa)*16; //得到小数部分
mantissa<<=4;
mantissa+=fraction;
RCC->APB2ENR|=1<<2; //使能PORTA口时钟
RCC->APB2ENR|=1<<14; //使能串口时钟
GPIOA->CRH&=0XFFFFF00F;
GPIOA->CRH|=0X000008B0;//IO状态设置
RCC->APB2RSTR|=1<<14; //复位串口1
RCC->APB2RSTR&=~(1<<14);//停止复位
//波特率设置
USART1->BRR=mantissa; // 波特率设置
USART1->CR1|=0X200C; //1位停止,无校验位.
#ifdef EN_USART1_RX //如果使能了接收
//使能接收中断
USART1->CR1|=1<<8; //PE中断使能
USART1->CR1|=1<<5; //接收缓冲区非空中断使能
MY_NVIC_Init(3,3,USART1_IRQChannel,2);//组2,最低优先级
#endif
}
void Uart1_PutChar(u8 ch)
{
USART1->DR = (u8) ch;
while((USART1->SR&0X40)==0);//循环发送,直到发送完毕
}
void Uart1_PutString(u8 *Buf, u8 Len)
{
u8 i;
for(i= 0; i<Len; i++)
{
Uart1_PutChar(*Buf++);
}
}
|