随着第四次工业革命的不断推进,AI技术正逐渐成为工业系统不可或缺的一部分,且仍在不断地推动着工业自动化向更高水平的智能制造转型。AI在工业自动化领域的应用,包括智能机器人、自动化生产线、智能物流、质量控制、设备维护等,让工业制造逐步实现从自动化到数字化、智能化的蜕变升级。
本文引用地址:http://www.eepw.com.cn/article/202403/456165.htm在传统视角中,工业控制似乎都是自动化的事情,和AI隔得相对较远。但当前工业科技飞速发展,我们应该重新认识当前的工业控制技术了。根据IFAC对工业技术影响力的调查结果发现,基于AI的控制在很多行业应用已经追赶、甚至超过了传统的控制方法。 在故障状态预测方面,传统的故障诊断需要依靠维修人员主动观察和判断,这就存在着效率低且误差高等问题。利用AI技术,通过对工控系统运行数据的分析和学习,便可以高质量的预测可能发生的故障,从而提前进行维护。利用AI的学习技术,可对机器的运行状态进行监测和分类,识别潜在故障,并立即通知相关人员并采取相应的行动。此外,AI技术还可以利用历史数据进行预测,从而提前采取措施,以避免生产过程中的问题,且可以有效避免生产中断,提高生产效率。 AI技术在工业生产中的应用还包括生产过程的优化。借助人工智能技术,对生产过程进行实时监控和优化,可快速地发现过程中存在的问题,并采取相应的措施,从而提高生产效率和产品质量。 AI技术的强大之处在于其可以对工业控制系统进行自适应调节。比如,神经网络控制器能通过对工业系统的学习和训练,自动找出最优的控制策略,实现快速而准确的控制效果。 且能够实现生产调度与资源优化,对生产过程中各个环节的数据进行分析和评估,可以使生产过程更加合理、更加高效。同时,智能化的生产系统也能够通过优化调度,降低成本,提高经济效益。 AI技术基于数据分析和算法训练的方式,可以不断地对工业控制系统进行持续改进。随着数据量的增加,人工智能系统能够不断优化自身的识别和预测能力,从而实现更加高效、更加智能的控制效果。 近年来,随着产业结构的调整、制造水平的进一步提升,我国工业自动化控制技术、产业和应用如雨后春笋般涌现,但在工业领域一些高难度、复杂的应用场景,仍然高度依赖人工。AI的出现恰好为这一困境提供了解决方案,不仅是重复的机械活动,还有一些需要人类辅助参与的任务,AI都可以出色完成。 然而在AI的工业自动化应用方面,半导体行业巨头英特尔近日和红帽联手创建了用于工业和跨垂直领域部署的云和边缘原生5G专网解决方案,该解决方案不仅成本效益高,而且更易于采用。这使制造商能够更容易抓住基于人工智能的软件定义的运营和工厂带来的巨大创收机遇。 这一参考解决方案包含Intel FlexRAN®软件,用于在新推出的Intel Edge Platform和红帽OpenShift上提供专有无线连接。这一值得信赖的解决方案可通过两家公司合作伙伴生态系统(业界最大的生态系统之一)中的第三方创新成果进行扩展或定制。通过在这个专有无线解决方案上整合Intel Edge Platform,并与我们的合作伙伴生态系统合作,红帽为服务提供商创建了经过验证和认证的解决方案,帮助他们利用红帽平台和技术实现业务成果。该解决方案对开发者也很友好,不会牺牲人工智能应用和工作负载的高端计算性能。 红帽OpenShift为5G专网工作负载提供了一个统一的云原生平台。OpenShift具有可扩展性,为连接能力和应用提供了灵活的架构,支持以更小的体积重新装配,从而构成了可覆盖边缘设备的企业专用无线网络。 部署后,5G专网可在现代化、自动化、可扩展且易管理的云原生平台上运行,提供必要的连接、工具和应用,实现在工厂车间注入人工智能,并增强安全能力。用例包括:预测性维护、用于数据提取的移动传感器、具有更高敏捷性的人工智能互连设备等等。 边缘AI同样也在为工业控制领域发挥着重要作用,边缘AI可以说是边缘计算和AI的结合体,其解决方案通过实现实时监控正在改变工业部门。通过对比了解并探索30多个应用案例,发现边缘人工智能解决方案实现了更高效、更主动和更高数据驱动的运营,并有助于提高安全性、减少或防止停机、优化生产及加强质量控制,通过实时分析来自智能传感器的振动、声音或温度等数据,边缘人工智能解决方案实现了预测性维护解决方案。 针对于此,ST公司研发出基于云连接的边缘处理解决方案SL-PREDMNT-E2C1,用于工业电机状态监测。该解决方案将ST的运动和环境传感器、STM32F4微控制器(MCU)和STM32MP157微处理单元(MPU) 全文观看链接:https://www.eepw.com.cn/article/202403/456165.htm
|