OpenEdv-开源电子网

 找回密码
 立即注册
正点原子全套STM32/Linux/FPGA开发资料,上千讲STM32视频教程免费下载...
查看: 2481|回复: 1

《STM32F407 探索者开发指南》第三十七章 SPI实验

[复制链接]

1118

主题

1129

帖子

2

精华

超级版主

Rank: 8Rank: 8

积分
4671
金钱
4671
注册时间
2019-5-8
在线时间
1224 小时
发表于 2023-8-15 17:55:30 | 显示全部楼层 |阅读模式
本帖最后由 正点原子运营 于 2023-8-14 15:25 编辑

第三十七章 SPI实验

1)实验平台:正点原子探索者STM32F407开发板

2) 章节摘自【正点原子】STM32F407开发指南 V1.1


4)全套实验源码+手册+视频下载地址:http://www.openedv.com/docs/boards/stm32/zdyz_stm32f407_explorerV3.html

5)正点原子官方B站:https://space.bilibili.com/394620890

6)STM32技术交流QQ群:151941872

155537c2odj87vz1z9vj6l.jpg

155537nfqovl2gg9faaol9.png

本章,我们将介绍如何使用STM32F407的SPI功能,并实现对外部FLASH的读写并把结果显示在TFTLCD模块上。本章分为如下几个小节:
37.1 SPI及NOR Flash芯片介绍
37.2 硬件设计
37.3 程序设计
37.4 下载验证

37.1 SPI及NOR Flash介绍
37.1.1 SPI介绍
我们将从结构、时序和寄存器三个部分来介绍SPI。

37.1.1.1 SPI框图
SPI是英语 Serial Peripheral interface 缩写,顾名思义就是串行外围设备接口。SPI通信协议是Motorola公司首先在其 MC68HCXX 系列处理器上定义的。SPI接口是一种高速的全双工同步的通信总线,已经广泛应用在众多MCU、存储芯片、AD转换器和LCD之间。大部分STM32有3个SPI接口,本实验使用的是SPI1。

我们先看SPI的结构框图,了解它的大致功能,如图37.1.1.1.1所示。                                 
image001.png
图37.1.1.1.1 SPI框图

围绕框图,我们展开介绍一下SPI的引脚信息、工作原理以及传输方式,把SPI的4种工作方式放在后面讲解。

SPI的引脚信息
MISO(MasterIn / Slave Out)主设备数据输入,从设备数据输出。
MOSI(MasterOut / Slave In)主设备数据输出,从设备数据输入。
SCLK(Serial Clock)时钟信号,由主设备产生。
CS(Chip Select)从设备片选信号,由主设备产生。

SPI的工作原理:在主机和从机都有一个串行移位寄存器,主机通过向它的SPI串行寄存器写入一个字节来发起一次传输。串行移位寄存器通过MOSI信号线将字节传送给从机,从机也将自己的串行移位寄存器中的内容通过MISO信号线返回给主机。这样,两个移位寄存器中的内容就被交换。外设的写操作和读操作是同步完成的。如果只是进行写操作,主机只需忽略接收到的字节。反之,若主机要读取从机的一个字节,就必须发送一个空字节引发从机传输。

SPI的传输方式:SPI总线具有三种传输方式:全双工、单工以及半双工传输方式。
全双工通信:在任何时刻,主机与从机之间都可以同时进行数据的发送和接收。
单工通信:在同一时刻,只有一个传输的方向,发送或者是接收。
半双工通信:在同一时刻,只能为一个方向传输数据。

37.1.1.2 SPI工作模式
STM32要与具有SPI接口的器件进行通信,就必须遵循SPI的通信协议。每一种通信协议都有各自的读写数据时序,当然SPI也不例外。SPI通信协议就具备4种工作模式,在讲这4种工作模式前,首先先知道两个单词CPOL和CPHA。

CPOL,详称Clock Polarity,就是时钟极性,当主从机没有数据传输的时候SCL线的电平状态(即空闲状态)。假如空闲状态是高电平,CPOL = 1;若空闲状态时低电平,那么CPOL = 0。

CPHA,详称Clock Phase,就是时钟相位。在这里先科普一下数据传输的常识: 同步通信时,数据的变化和采样都是在时钟边沿上进行的,每一个时钟周期都会有上升沿和下降沿两个边沿,那么数据的变化和采样就分别安排在两个不同的边沿,由于数据在产生和到它稳定是需要一定的时间,那么假如我们在第1个边沿信号把数据输出了,从机只能从第2个边沿信号去采样这个数据。

CPHA实质指的是数据的采样时刻,CPHA = 0的情况就表示数据的采样是从第1个边沿信号上即奇数边沿,具体是上升沿还是下降沿的问题,是由CPOL决定的。这里就存在一个问题:当开始传输第一个bit的时候,第1个时钟边沿就采集该数据了,那数据是什么时候输出来的呢?那么就有两种情况:一是CS使能的边沿,二是上一帧数据的最后一个时钟沿。

CPHA = 1的情况就是表示数据采样是从第2个边沿即偶数边沿,它的边沿极性要注意一点,不是和上面CPHA = 0一样的边沿情况。前面的是奇数边沿采样数据,从SCL空闲状态的直接跳变,空闲状态是高电平,那么它就是下降沿,反之就是上升沿。由于CPHA = 1是偶数边沿采样,所以需要根据偶数边沿判断,假如第一个边沿即奇数边沿是下降沿,那么偶数边沿的边沿极性就是上升沿。不理解的,可以看一下下面4种SPI工作模式的图。

由于CPOL和CPHA都有两种不同状态,所以SPI分成了4种模式。我们在开发的时候,使用比较多的是模式0和模式3。下面请看表37.1.1.2.1 SPI工作模式表。
QQ截图20230814152203.png
表37.1.1.2.1 SPI工作模式表

下面分别对SPI的4种工作模式进行分析:     
image003.png
图37.1.1.2.1 串行时钟的奇数边沿上升沿采样时序图

我们分析一下CPOL = 0&&CPHA = 0的时序,图37.1.1.2.1就是串行时钟的奇数边沿上升沿采样的情况,首先由于配置了CPOL = 0,可以看到当数据未发送或者发送完毕,SCL的状态是低电平,再者CPHA= 0即是奇数边沿采集。所以传输的数据会在奇数边沿上升沿被采集,MOSI和MISO数据的有效信号需要在SCK奇数边沿保持稳定且被采样,在非采样时刻,MOSI和MISO的有效信号才发生变化。     
image005.png
图37.1.1.2.2 串行时钟的偶数边沿下降沿采样图

现在分析一下CPOL = 0&CPHA = 1的时序,图37.1.1.2.2是串行时钟的偶数边沿下降沿采样的情况。由于CPOL = 0,所以SCL的空闲状态依然是低电平,CPHA= 1数据就从偶数边沿采样,至于是上升沿还是下降沿,从上图就可以知道,是下降沿。这里有一个误区,空闲状态是低电平的情况下,不是应该上升沿吗,为什么这里是下降沿?首先我们先明确这里是偶数边沿采样,那么看图就很清晰,SCL低电平空闲状态下,上升沿是在奇数边沿上,下降沿是在偶数边沿上。     
image007.png
图37.1.1.2.3 串行时钟的奇数边沿下降沿采样图

图37.1.1.2.3这种情况和第一种情况相似,只是这里是CPOL = 1,即SCL空闲状态为高电平,在CPHA= 0,奇数边沿采样的情况下,数据在奇数边沿下降沿要保持稳定并等待采样。     
image009.png
图37.1.1.2.4 串行时钟的偶数边沿上升沿采样图

图37.1.1.2.4是CPOL = 1&&CPHA = 1的情形,可以看到未发送数据和发送数据完毕,SCL的状态是高电平,奇数边沿的边沿极性是上升沿,偶数边沿的边沿极性是下降沿。因为CPHA = 1,所以数据在偶数边沿上升沿被采样。在奇数边沿的时候MOSI和MISO会发生变化,在偶数边沿时候是稳定的。

37.1.1.3 SPI寄存器
在这里我们简单介绍一下本实验用到的寄存器。

l  SPI控制寄存器1SPI_CR1
SPI 控制寄存器1描述如图37.1.1.3.1所示:     
image011.png
图37.1.1.3.1 SPI_CR1寄存器(部分)

该寄存器控制着SPI很多相关信息,包括主设备模式选择,传输方向,数据格式,时钟极性、时钟相位和使能等。下面讲解一下本实验配置的位,在位CPHA置1,数据采样从第二个时钟边沿开始;在位CPOL置0,在空闲状态时,SCK保持低电平;在位MSTR置1,配置为主设备;在位BR[2:0]置7,使用256分频,速度最低;在位SPE置1,开启SPI设备;在位LSBFIRST置0,MSB先传输;在位SSI置1,禁止软件从设备,即做主机;在位SSM置1,软件片选NSS控制;在位RXONLY置0,传输方式采用的是全双工模式;在位DFF置0,使用8位数据帧格式。

l  SPI状态寄存器(SPI_SR
SPI 状态寄存器描述如图37.1.1.3.2所示:     
image013.png
图37.1.1.3.2 SPI_SR寄存器(部分)

该寄存器是查询当前SPI的状态的,我们在实验中用到的是TXE位和RXNE位,即发送完成和接收完成是否的标记。

l  SPI数据寄存器(SPI_DR
SPI 数据寄存器描述如图37.1.3.3所示:     
image015.png
图37.1.1.3.2 SPI_DR寄存器

该寄存器是SPI数据寄存器,是一个双寄存器,包括了发送缓存和接收缓存。当向该寄存器写数据的时候,SPI就会自动发送,当收到数据的时候,也是存在该寄存器内。

37.1.2 NOR Flash简介
37.1.2.1 Flash简介
Flash是常见的用于存储数据的半导体器件,它具有容量大、可重复擦写、按“扇区/块”擦除、掉电后数据可继续保存的特性。常见的Flash主要有NOR Flash和Nand Flash两种类型,它们的特性如表37.1.2.1.1所示。NOR和NAND是两种数字门电路,可以简单地认为Flash内部存储单元使用哪种门作存储单元就是哪类型的Flash。U盘,SSD,eMMC等为NAND型,而NOR Flash则根据设计需要灵活应用于各类PCB上,如BIOS,手机等。
QQ截图20230814152327.png
表37.1.2.1.1NOR Flash和NAND Flash特性对比

NOR与NAND在数据写入前都需要有擦除操作,但实际上NOR Flash的一个bit可以从1变成0,而要从0变1就要擦除后再写入,NAND Flash这两种情况都需要擦除。擦除操作的最小单位为“扇区/块”,这意味着有时候即使只写一字节的数据,则这个“扇区/块”上之前的数据都可能会被擦除。

NOR的地址线和数据线分开,它可以按“字节”读写数据,符合CPU的指令译码执行要求,所以假如NOR上存储了代码指令,CPU给NOR一个地址,NOR就能向CPU返回一个数据让CPU执行,中间不需要额外的处理操作,这体现于表37.1.2.1.1中的支持XIP特性(eXecute In Place)。因此可以用NOR Flash直接作为嵌入式MCU的程序存储空间。

NAND的数据和地址线共用,只能按“块”来读写数据,假如NAND上存储了代码指令,CPU给NAND地址后,它无法直接返回该地址的数据,所以不符合指令译码要求。

若代码存储在NAND上,可以把它先加载到RAM存储器上,再由CPU执行。所以在功能上可以认为NOR是一种断电后数据不丢失的RAM,但它的擦除单位与RAM有区别,且读写速度比RAM要慢得多。

Flash也有对应的缺点,我们在使用过程中需要尽量去规避这些问题:一是Flash的使用寿命,另一个是可能的位反转。

使用寿命体现在:读写上是FLASH的擦除次数都是有限的(NORFlash普遍是10万次左右),当它的使用接近寿命的时候,可能会出现写操作失败。由于NAND通常是整块擦写,块内有一位失效整个块就会失效,这被称为坏块。使用NAND Flash最好通过算法扫描介质找出坏块并标记为不可用,因为坏块上的数据是不准确的。

位反转是数据位写入时为1,但经过一定时间的环境变化后可能实际变为0的情况,反之亦然。位反转的原因很多,可能是器件特性也可能与环境、干扰有关,由于位反转的问题可能存在,所以FLASH存储器需要“探测/错误更正(EDC/ECC)”算法来确保数据的正确性。

FLASH芯片有很多种芯片型号,在我们的norflash.h头文件中有定义芯片ID的宏定义,对应的就是不同型号的NOR FLASH芯片,比如有:W25Q128、BY25Q128、NM25Q128,它们是来自不同的厂商的同种规格的NOR FLASH芯片,内存空间都是128M字,即16M字节。它们的很多参数、操作都是一样的,所以我们的实验都是兼容它们的。

由于这么多的芯片,我们就不一一进行介绍了,就拿其中一款型号进行介绍即可,其他的型号都是类似的。

下面我们以NM25Q128为例,认识一下具体的NOR Flash的特性。

NM25Q128是一款大容量SPI FLASH产品,其容量为16M。它将16M字节的容量分为256个块(Block),每个块大小为64K字节,每个块又分为16个扇区(Sector),每一个扇区16页,每页256个字节,即每个扇区4K个字节。NM25Q128的最小擦除单位为一个扇区,也就是每次必须擦除4K个字节。这样我们需要给NM25Q128开辟一个至少4K的缓存区,这样对SRAM要求比较高,要求芯片必须有4K以上SRAM才能很好的操作。

NM25Q128的擦写周期多达10W次,具有20年的数据保存期限,支持电压为2.7~3.6V,NM25Q128支持标准的SPI,还支持双输出/四输出的SPI,最大SPI时钟可以到80Mhz(双输出时相当于160Mhz,四输出时相当于320M)。

下面我们看一下NM25Q128芯片的管脚图,如图37.1.2.1.2所示。     
image017.png
图 37.1.2.1.2 NM25Q128芯片引脚图

芯片引脚连接如下:CS即片选信号输入,低电平有效;DO是MISO引脚,在CLK管脚的下降沿输出数据;WP是写保护管脚,高电平可读可写,低电平仅仅可读;DI是MOSI引脚,主机发送的数据、地址和命令从SI引脚输入到芯片内部,在CLK管脚的上升沿捕获数据;CLK是串行时钟引脚,为输入输出提供时钟脉冲;HOLD是保持管脚,低电平有效。

STM32F407通过SPI总线连接到NM25Q128对应的引脚即可启动数据传输。

37.1.2.2 NOR FLASH工作时序
前面对于NM25Q128的介绍中也提及其存储的体系,NM25Q128有写入、读取还有擦除的功能,下面就对这三种操作的时序进行分析,在后面通过代码的形式驱动它。

下面先让我们看一下读操作时序,如图37.1.2.1所示:     
image019.png
图37.1.2.2.1 NM25Q128读操作时序图

从上图可知读数据指令是03H,可以读出一个字节或者多个字节。发起读操作时,先把CS片选管脚拉低,然后通过MOSI引脚把03H发送芯片,之后再发送要读取的24位地址,这些数据在CLK上升沿时采样。芯片接收完24位地址之后,就会把相对应地址的数据在CLK引脚下降沿从MISO引脚发送出去。从图中可以看出只要CLK一直在工作,那么通过一条读指令就可以把整个芯片存储区的数据读出来。当主机把CS引脚拉高,数据传输停止。

接着我们看一下写时序,这里我们先看页写时序,如图37.1.2.2.2所示:     
image021.png
图37.1.2.2.2 NM25Q128页写时序

在发送页写指令之前,需要先发送“写使能”指令。然后主机拉低CS引脚,然后通过MOSI引脚把02H发送到芯片,接着发送24位地址,最后你就可以发送你需要写的字节数据到芯片。完成数据写入之后,需要拉高CS引脚,停止数据传输。

下面介绍一下扇区擦除时序,如图37.1.2.2.3所示:     
image023.png
图37.1.2.2.3 扇区擦除时序图

扇区擦除指的是将一个扇区擦除,通过前面的介绍也知道,NM25Q128的扇区大小是4K字节。擦除扇区后,扇区的位全置1,即扇区字节为FFh。同样的,在执行扇区擦除之前,需要先执行写使能指令。这里需要注意的是当前SPI总线的状态,假如总线状态是BUSY,那么这个扇区擦除是无效的,所以在拉低CS引脚准备发送数据前,需要先要确定SPI总线的状态,这就需要执行读状态寄存器指令,读取状态寄存器的BUSY位,需要等待BUSY位为0,才可以执行擦除工作。

接着按时序图分析,主机先拉低CS引脚,然后通过MOSI引脚发送指令代码20h到芯片,然后接着把24位扇区地址发送到芯片,然后需要拉高CS引脚,通过读取寄存器状态等待扇区擦除操作完成。

此外还有对整个芯片进行擦除的操作,时序比扇区擦除更加简单,不用发送24bit地址,只需要发送指令代码C7h到芯片即可实现芯片的擦除。

在NM25Q128手册中还有许多种方式的读/写/擦除操作,我们这里只分析本实验用到的,其他大家可以参考NM25Q128手册。

37.2 硬件设计
1. 例程功能
通过KEY1按键来控制norflash的写入,通过按键KEY0来控制norflash的读取。并在LCD模块上显示相关信息。我们还可以通过USMART控制读取norflash的ID、擦除某个扇区或整片擦除。LED0闪烁用于提示程序正在运行。

2. 硬件资源
1)LED灯
       LED0– PF9
2)独立按键
       KEY0– PE4
       KEY1– PE3
3)串口1(PA9/PA10连接在板载USB转串口芯片CH340上面)(USMART使用)
4)正点原子 2.8/3.5/4.3/7寸TFTLCD模块(仅限MCU屏,16位8080并口驱动)
5)SPI1(PB3/PB4/PB5/PB14)
6)norflash(本例程使用的是W25Q128,连接在SPI1上)

3. 原理图
我们主要来看看norflash和开发板的连接,如下图所示:     
image025.png
图37.3.1 NOR FLASH与开发板的连接原理

通过上图可知,NOR FLASH的CS、SCK、MISO和MOSI分别连接在PB14、PB3、PB4和PB5上。本实验还支持多种型号的SPIFLASH芯片,比如:BY25Q128/NM25Q128/W25Q128等等,具体请看norflash.h文件的宏定义,在程序上只需要稍微修改一下,后面讲解程序的时候会提到。

37.3 程序设计
37.3.1 SPI的HAL库驱动
SPI在HAL库中的驱动代码在stm32f4xx_hal_spi.c文件(及其头文件)中。

1. HAL_SPI_Init函数
SPI的初始化函数,其声明如下:
  1. HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi);
复制代码
l  函数描述:
用于初始化SPI。

l  函数形参:
形参1是SPI_HandleTypeDef结构体类型指针变量,其定义如下:
  1. typedef struct__SPI_HandleTypeDef
  2. {
  3.   SPI_TypeDef                 *Instance;      /* SPI寄存器基地址 */
  4. SPI_InitTypeDef             Init;            /* SPI通信参数 */
  5.   uint8_t                      *pTxBuffPtr;     /* SPI的发送缓存 */
  6.   uint16_t                     TxXferSize;      /* SPI的发送数据大小 */
  7.   __IO uint16_t               TxXferCount;    /* SPI发送端计数器 */
  8.   uint8_t                      *pRxBuffPtr;     /* SPI的接收缓存 */
  9.   uint16_t                     RxXferSize;      /* SPI的接收数据大小 */
  10.   __IO uint16_t               RxXferCount;    /* SPI接收端计数器 */
  11.   void (*RxISR)(struct __SPI_HandleTypeDef *hspi);   /* SPI的接收端中断服务函数 */
  12.   void (*TxISR)(struct __SPI_HandleTypeDef *hspi);   /* SPI的发送端中断服务函数 */
  13. DMA_HandleTypeDef          *hdmatx;         /* SPI发送参数设置(DMA) */
  14. DMA_HandleTypeDef           *hdmarx;         /* SPI接收参数设置(DMA) */
  15. HAL_LockTypeDef            Lock;            /* SPI锁对象 */
  16.   __IOHAL_SPI_StateTypeDef State;           /* SPI传输状态 */
  17.   __IO uint32_t               ErrorCode;      /* SPI操作错误代码 */
  18. } SPI_HandleTypeDef;
复制代码
我们这里主要讲解第二个成员变量Init,它是SPI_InitTypeDef结构体类型,该结构体定义如下:
  1. typedef struct
  2. {
  3.   uint32_t Mode;                /* 模式:主:SPI_MODE_MASTER  从:SPI_MODE_SLAVE*/
  4.   uint32_t Direction;            /* 方向: 只接收模式 单线双向通信数据模式 全双工 */
  5.   uint32_t DataSize;             /* 数据帧格式: 8位/16位 */
  6.   uint32_t CLKPolarity;          /* 时钟极性CPOL 高/低电平 */
  7.   uint32_t CLKPhase;              /* 时钟相位 奇/偶数边沿采集 */
  8.   uint32_t NSS;                    /* SS信号由硬件(NSS)管脚控制还是软件控制 */
  9.   uint32_t BaudRatePrescaler;   /* 设置SPI波特率预分频值*/
  10.   uint32_t FirstBit;             /* 起始位是MSB还是LSB */
  11.   uint32_t TIMode;                /* 帧格式 SPI motorola模式还是TI模式 */
  12.   uint32_t CRCCalculation;      /* 硬件CRC是否使能 */
  13.   uint32_t CRCPolynomial;       /* 设置CRC多项式*/
  14. } SPI_InitTypeDef;
复制代码
l  函数返回值:
HAL_StatusTypeDef枚举类型的值。

使用SPI传输数据的配置步骤
1)SPI参数初始化(工作模式、数据时钟极性、时钟相位等)
HAL库通过调用SPI初始化函数HAL_SPI_Init完成对SPI参数初始化,详见例程源码。
注意:该函数会调用:HAL_SPI_MspInit函数来完成对SPI底层的初始化,包括:SPI及GPIO时钟使能、GPIO模式设置等。

2)使能SPI时钟和配置相关引脚的复用功能。
本实验用到SPI1,使用PB3、PB4和PB5作为SPI_SCK、SPI_MISO和SPI_MOSI,因此需要先使能SPI1和GPIOB时钟。参考代码如下:
  1. __HAL_RCC_SPI1_CLK_ENABLE();
  2. __HAL_RCC_GPIOB_CLK_ENABLE();
复制代码
IO口复用功能是通过函数HAL_GPIO_Init来配置的。

3)使能SPI
通过__HAL_SPI_ENABLE函数使能SPI,便可进行数据传输。

4SPI传输数据
通过HAL_SPI_Transmit函数进行发送数据。
通过HAL_SPI_Receive函数进行接收数据。
也可以通过HAL_SPI_TransmitReceive函数进行发送与接收操作。

5)设置SPI传输速度
SPI初始化结构体SPI_InitTypeDef有一个成员变量是BaudRatePrescaler,该成员变量用来设置SPI的预分频系数,从而决定了SPI的传输速度。但是HAL库并没有提供单独的SPI分频系数修改函数,如果我们需要在程序中偶尔修改速度,那么我们就要通过设置SPI_CR1寄存器来修改,具体实现方法请参考后面软件设计小节相关函数。

37.3.2 程序流程图
QQ截图20230812143800.png
图37.3.2.1 SPI实验程序流程图

37.3.3 程序解析
本实验中,我们通过调用HAL库的函数去驱动SPI进行通信,所以需要在工程中的FWLIB分组下添加stm32f4xx_hal_spi.c文件去支持。实验工程中,我们新增了spi.c存放spi底层驱动代码,norflash.c文件存放W25Q128/NM25Q128/BY25Q128驱动。

1. SPI驱动代码
这里我们只讲解核心代码,详细的源码请大家参考光盘本实验对应源码。SPI驱动源码包括两个文件:spi.c和spi.h。

下面我们直接介绍SPI相关的程序,首先先介绍 spi.h文件,其定义如下:
  1. /* SPI1 引脚 定义 */
  2. #define SPI1_SCK_GPIO_PORT            GPIOB
  3. #define SPI1_SCK_GPIO_PIN              GPIO_PIN_3
  4. #define SPI1_SCK_GPIO_CLK_ENABLE()   do{ __HAL_RCC_GPIOB_CLK_ENABLE();}while(0)
  5. #define SPI1_MISO_GPIO_PORT           GPIOB
  6. #define SPI1_MISO_GPIO_PIN            GPIO_PIN_4
  7. #define SPI1_MISO_GPIO_CLK_ENABLE()  do{ __HAL_RCC_GPIOB_CLK_ENABLE(); }while(0)
  8. #define SPI1_MOSI_GPIO_PORT            GPIOB
  9. #define SPI1_MOSI_GPIO_PIN             GPIO_PIN_5
  10. #define SPI1_MOSI_GPIO_CLK_ENABLE()  do{ __HAL_RCC_GPIOB_CLK_ENABLE(); }while(0)
  11. /* SPI1相关定义 */
  12. #define SPI1_SPI                         SPI1
  13. #define SPI1_SPI_CLK_ENABLE()        do{ __HAL_RCC_SPI1_CLK_ENABLE();}while(0)
复制代码
我们通过宏定义标识符的方式去定义SPI通信用到的三个管脚SCK、MISO和MOSI,同时还宏定义SPI1的相关信息。

接下来我们看一下spi.c代码中的初始化函数,代码如下:
  1. /**
  2. * @brief       SPI初始化代码
  3. *   @note      主机模式,8位数据,禁止硬件片选
  4. * @param        无
  5. * @retval       无
  6. */
  7. SPI_HandleTypeDef g_spi1_handler;              /* SPI1句柄 */
  8. void spi1_init(void)
  9. {
  10.     SPI1_SPI_CLK_ENABLE();                      /* SPI1时钟使能 */
  11.     g_spi1_handler.Instance = SPI1_SPI;         /* SPI1 */
  12.     g_spi1_handler.Init.Mode = SPI_MODE_MASTER; /* 设置SPI工作模式,设置为主模式 */
  13. /* 设置SPI单向或者双向的数据模式:SPI设置为双线模式 */
  14.     g_spi1_handler.Init.Direction =SPI_DIRECTION_2LINES;
  15. /* 设置SPI的数据大小:SPI发送接收8位帧结构 */
  16.     g_spi1_handler.Init.DataSize = SPI_DATASIZE_8BIT;
  17.     /* 串行同步时钟的空闲状态为高电平 */
  18. g_spi1_handler.Init.CLKPolarity = SPI_POLARITY_HIGH;
  19. /* 串行同步时钟的第二个跳变沿(上升或下降)数据被采样 */
  20. g_spi1_handler.Init.CLKPhase = SPI_PHASE_2EDGE;
  21. /* NSS信号由硬件(NSS管脚)还是软件(使用SSI位)管理:内部NSS信号有SSI位控制 */
  22.     g_spi1_handler.Init.NSS = SPI_NSS_SOFT;
  23. /* 定义波特率预分频的值:波特率预分频值为256 */
  24.     g_spi1_handler.Init.BaudRatePrescaler =SPI_BAUDRATEPRESCALER_256;
  25. /* 指定数据传输从MSB位还是LSB位开始:数据传输从MSB位开始 */
  26.     g_spi1_handler.Init.FirstBit = SPI_FIRSTBIT_MSB;
  27.     g_spi1_handler.Init.TIMode = SPI_TIMODE_DISABLE;   /* 关闭TI模式 */
  28. /* 关闭硬件CRC校验 */
  29.     g_spi1_handler.Init.CRCCalculation =SPI_CRCCALCULATION_DISABLE;
  30.     g_spi1_handler.Init.CRCPolynomial = 7;               /* CRC值计算的多项式 */
  31.     HAL_SPI_Init(&g_spi1_handler);                         /* 初始化 */
  32.    __HAL_SPI_ENABLE(&g_spi1_handler);                    /* 使能SPI1 */
  33.     /* 启动传输, 实际上就是产生8个时钟脉冲, 达到清空DR的作用, 非必需 */
  34.     spi1_read_write_byte(0XFF);
  35. }
复制代码
在spi_init函数中主要工作就是对于SPI参数的配置,这里包括工作模式、数据模式、数据大小、时钟极性、时钟相位、波特率预分频值等。关于SPI的管脚配置就放在了HAL_SPI_MspInit函数里,其代码如下:
  1. /**
  2. * @brief        SPI底层驱动,时钟使能,引脚配置
  3. *   @note      此函数会被HAL_SPI_Init()调用
  4. * @param        hspi: SPI句柄
  5. * @retval      无
  6. */
  7. voidHAL_SPI_MspInit(SPI_HandleTypeDef*hspi)
  8. {
  9.    GPIO_InitTypeDef gpio_init_struct;
  10.     if (hspi->Instance == SPI1_SPI)
  11.     {
  12.        SPI1_SCK_GPIO_CLK_ENABLE();      /* SPI1_SCK脚时钟使能 */
  13.        SPI1_MISO_GPIO_CLK_ENABLE();    /* SPI1_MISO脚时钟使能 */
  14.        SPI1_MOSI_GPIO_CLK_ENABLE();    /* SPI1_MOSI脚时钟使能 */
  15.        /* SCK引脚模式设置(复用输出) */
  16.        gpio_init_struct.Pin = SPI1_SCK_GPIO_PIN;
  17.        gpio_init_struct.Mode = GPIO_MODE_AF_PP;
  18.        gpio_init_struct.Pull = GPIO_PULLUP;
  19.        gpio_init_struct.Speed = GPIO_SPEED_FREQ_HIGH;
  20.        gpio_init_struct.Alternate = GPIO_AF5_SPI1;
  21.        HAL_GPIO_Init(SPI1_SCK_GPIO_PORT, &gpio_init_struct);
  22.        /* MISO引脚模式设置(复用输出) */
  23.        gpio_init_struct.Pin = SPI1_MISO_GPIO_PIN;
  24.        HAL_GPIO_Init(SPI1_MISO_GPIO_PORT, &gpio_init_struct);
  25.        /* MOSI引脚模式设置(复用输出) */
  26.        gpio_init_struct.Pin = SPI1_MOSI_GPIO_PIN;
  27.        HAL_GPIO_Init(SPI1_MOSI_GPIO_PORT, &gpio_init_struct);
  28.     }
  29. }
复制代码
通过以上两个函数的作用就可以完成SPI初始。接下来介绍SPI的发送和接收函数,其定义如下:
  1. /**
  2. * @brief       SPI1读写一个字节数据
  3. * @param       txdata : 要发送的数据(1字节)
  4. * @retval      接收到的数据(1字节)
  5. */
  6. uint8_t spi1_read_write_byte(uint8_t txdata)
  7. {
  8.     uint8_t rxdata;
  9.    HAL_SPI_TransmitReceive(&g_spi1_handler, &txdata, &rxdata, 1, 1000);
  10.     return rxdata; /* 返回收到的数据 */
  11. }
复制代码
这里的spi_read_write_byte函数直接调用了HAL库内置的函数进行接收发送操作。前面已经有介绍了,这里就不展开对HAL_SPI_TransmitReceive函数的解析。

由于不同的外设需要的通信速度不一样,所以这里我们定义了一个速度设置函数,通过操作寄存器的方式去实现,其代码如下:
  1. /**
  2. *@brief       SPI1速度设置函数
  3. *  @note       SPI1时钟选择来自APB1, 即PCLK1, 为 42MHz
  4. *               SPI速度 = PCLK1 / 2^(speed + 1)
  5. *@param       speed   : SPI1时钟分频系数
  6.                         取值为SPI_BAUDRATEPRESCALER_2~SPI_BAUDRATEPRESCALER_2256
  7. *@retval      无
  8. */
  9. voidspi1_set_speed(uint8_t speed)
  10. {
  11.    assert_param(IS_SPI_BAUDRATE_PRESCALER(speed));    /* 判断有效性 */
  12.    __HAL_SPI_DISABLE(&g_spi1_handler);                  /* 关闭SPI */
  13.    g_spi1_handler.Instance->CR1 &= 0XFFC7;          /* 位3-5清零,用来设置波特率 */
  14.    g_spi1_handler.Instance->CR1 |= speed << 3;     /* 设置SPI速度 */
  15.    __HAL_SPI_ENABLE(&g_spi1_handler);                /* 使能SPI */
  16. }
复制代码
2. norflash驱动代码
这里我们只讲解核心代码,详细的源码请参考光盘本实验对应源码。NOR FLASH驱动源码包括两个文件:norflash.c和norflash.h。

在上一小节已经对SPI协议需要用到的东西都封装好了。那么现在就要在SPI通信的基础上,通过前面分析的NM25Q128的工作时序拟定通信代码。

由于这部分的代码量比较多,这里就不一一贴出来介绍。介绍几个重点,其余的请自行查看源码。首先是norflash.h头文件,我们做了一个FLASH芯片列表(宏定义),这些宏定义是一些支持的FLASH芯片的ID。接下来是FLASH芯片指令表的宏定义,这个请参考FLASH芯片手册比对得到,这里就不将代码列出来了。

下面介绍norflash.c文件几个重要的函数,首先是NOR FLASH初始化函数,其定义如下:
  1. /**
  2. * @brief       初始化SPI NORFLASH
  3. * @param        无
  4. * @retval       无
  5. */
  6. void norflash_init(void)
  7. {
  8.     uint8_t temp;
  9.    NORFLASH_CS_GPIO_CLK_ENABLE();  /* NORFLASH CS脚 时钟使能 */
  10. /* CS引脚模式设置(复用输出) */
  11.    GPIO_InitTypeDef gpio_init_struct;
  12.    gpio_init_struct.Pin = NORFLASH_CS_GPIO_PIN;
  13. gpio_init_struct.Mode = GPIO_MODE_OUTPUT_PP;
  14.    gpio_init_struct.Pull = GPIO_PULLUP;
  15. gpio_init_struct.Speed = GPIO_SPEED_FREQ_HIGH;
  16.     HAL_GPIO_Init(NORFLASH_CS_GPIO_PORT, &gpio_init_struct);
  17.     NORFLASH_CS(1);      /* 取消片选 */
  18.     spi1_init();         /* 初始化SPI1 */
  19.     spi1_set_speed(SPI_SPEED_4);             /* SPI1 切换到高速状态 21Mhz */
  20.    
  21. g_norflash_type = norflash_read_id();   /* 读取FLASH ID. */
  22.     if (g_norflash_type == W25Q256) /* SPI FLASH为W25Q256, 必须使能4字节地址模式 */
  23.     {
  24.         temp = norflash_read_sr(3);  /* 读取状态寄存器3,判断地址模式 */
  25.         if ((temp & 0X01) == 0)       /* 如果不是4字节地址模式,则进入4字节地址模式 */
  26.         {
  27.            norflash_write_enable();  /* 写使能 */
  28.             temp |= 1 << 1;            /* ADP=1, 上电4位地址模式 */
  29.            norflash_write_sr(3, temp);    /* 写SR3 */
  30.             
  31.            NORFLASH_CS(0);
  32.            spi1_read_write_byte(FLASH_Enable4ByteAddr);    /* 使能4字节地址指令 */
  33.            NORFLASH_CS(1);
  34.         }
  35. }
  36. }
复制代码
在初始化函数中,将SPI通信协议用到的CS引脚配置好,同时根据FLASH的通信要求,通过调用spi1_set_speed函数把SPI1切换到高速状态。然后尝试读取flash的ID,由于W25Q256的容量比较大,通信的时候需要4个字节,为了函数的兼容性,我们这里做了判断处理。当然,我们使用的NM25Q128是3字节地址模式的。如果能读到ID则说明我们的SPI时序能正常操作Flash,便可以通过SPI接口读写NOR FLASH的数据了。

进行其它数据操作时,由于每一次读写操作的时候都需要发送地址,所以这里我们把这个板块封装成函数,函数名是norflash_send_address,实质上就是通过SPI的发送接收函数spi1_read_write_byte实现的,这里就不列出来了,大家可以查看光盘源码。
下面介绍一下FLASH读取函数,这里可以根据前面的时序图对照理解,其定义如下:
  1. /**
  2. * @brief       读取SPI FLASH
  3. *   @note      在指定地址开始读取指定长度的数据
  4. * @param        pbuf    : 数据存储区
  5. * @param        addr    : 开始读取的地址(最大32bit)
  6. * @param        datalen : 要读取的字节数(最大65535)
  7. * @retval       无
  8. */
  9. void norflash_read(uint8_t *pbuf, uint32_t addr, uint16_t datalen)
  10. {
  11.     uint16_t i;
  12.     NORFLASH_CS(0);
  13.     spi1_read_write_byte(FLASH_ReadData);       /* 发送读取命令 */
  14.    norflash_send_address(addr);                  /* 发送地址 */
  15.    
  16.     for(i=0;i<datalen;i++)
  17.     {
  18.         pbuf = spi1_read_write_byte(0XFF);   /* 循环读取 */
  19.     }
  20.    
  21.     NORFLASH_CS(1);
  22. }
复制代码
该函数用于从NOR FLASH的指定位置读出指定长度的数据,由于NOR FLASH支持以任意地址(但是不能超过NOR FLASH的地址范围)开始读取数据,所以,这个代码相对来说比较简单。首先拉低片选信号,发送读取命令,接着发送24位地址之后,程序就可以开始循环读数据,其地址就会自动增加,读取完数据后,需要拉高片选信号,结束通信。

有读函数,那肯定就有写函数,接下来我们介绍一下NOR FLASH写函数,其定义如下:
  1. /**
  2. * @brief       写SPI FLASH
  3. *   @note      在指定地址开始写入指定长度的数据 , 该函数带擦除操作!
  4. *                SPIFLASH 一般是: 256个字节为一个Page,4Kbytes为一个Sector, 16个扇区
  5. *                为1个Block,擦除的最小单位为Sector.
  6. *
  7. * @param        pbuf    : 数据存储区
  8. * @param        addr    : 开始写入的地址(最大32bit)
  9. * @param        datalen: 要写入的字节数(最大65535)
  10. * @retval       无
  11. */
  12. uint8_t g_norflash_buf[4096];   /* 扇区缓存 */
  13. void norflash_write(uint8_t *pbuf, uint32_t addr, uint16_t datalen)
  14. {
  15.     uint32_t secpos;
  16.     uint16_t secoff;
  17.     uint16_t secremain;
  18.     uint16_t i;
  19. uint8_t *norflash_buf;
  20. norflash_buf = g_norflash_buf;
  21.     secpos = addr / 4096;       /* 扇区地址 */
  22.     secoff = addr % 4096;        /* 在扇区内的偏移 */
  23. secremain = 4096 - secoff;  /* 扇区剩余空间大小 */
  24.     if (datalen <= secremain)
  25.     {
  26.         secremain = datalen;     /* 不大于4096个字节 */
  27.     }
  28.     while (1)
  29.     {
  30.        norflash_read(norflash_buf, secpos * 4096, 4096);   /* 读出整个扇区的内容 */
  31.         for (i = 0; i < secremain; i++)      /* 校验数据 */
  32.         {
  33.             if (norflash_buf[secoff + i] != 0XFF)
  34.             {
  35.                 break;                         /* 需要擦除, 直接退出for循环 */
  36.             }
  37.         }
  38.         if (i < secremain)                   /* 需要擦除 */
  39.         {
  40.            norflash_erase_sector(secpos);   /* 擦除这个扇区 *
  41.             for (i = 0; i < secremain; i++)   /* 复制 */
  42.             {
  43.                norflash_buf[i + secoff] = pbuf;
  44.             }
  45. /* 写入整个扇区 */
  46.            norflash_write_nocheck(norflash_buf, secpos * 4096, 4096);
  47.         }
  48.         else    /* 写已经擦除了的, 直接写入扇区剩余区间. */
  49.         {
  50.            norflash_write_nocheck(pbuf, addr, secremain);  /* 直接写扇区 */
  51.         }
  52.         if (datalen == secremain)
  53.         {
  54.             break;  /* 写入结束了 */
  55.         }
  56.         else        /* 写入未结束 */
  57.         {
  58.             secpos++;                 /* 扇区地址增1 */
  59.             secoff = 0;                /* 偏移位置为0 */
  60.             pbuf += secremain;        /* 指针偏移 */
  61.             addr += secremain;        /* 写地址偏移 */
  62.             datalen-= secremain;     /* 字节数递减 */
  63.             if (datalen > 4096)
  64.             {
  65.                secremain = 4096;     /* 下一个扇区还是写不完 */
  66.             }
  67.             else
  68.             {
  69.                secremain = datalen;  /* 下一个扇区可以写完了 */
  70.             }
  71.         }
  72.     }
  73. }
复制代码
该函数可以在NOR FLASH的任意地址开始写入任意长度(必须不超过NOR FLASH的容量)的数据。我们这里简单介绍一下思路:先获得首地址(WriteAddr)所在的扇区,并计算在扇区内的偏移,然后判断要写入的数据长度是否超过本扇区所剩下的长度,如果不超过,再先看看是否要擦除,如果不要,则直接写入数据即可,如果要则读出整个扇区,在偏移处开始写入指定长度的数据,然后擦除这个扇区,再一次性写入。当所需要写入的数据长度超过一个扇区的长度的时候,我们先按照前面的步骤把扇区剩余部分写完,再在新扇区内执行同样的操作,如此循环,直到写入结束。这里我们还定义了一个g_norflash_buf的全局变量,用于擦除时缓存扇区内的数据。

简单介绍一下写函数的实质调用,它用到的是通过无检验写SPI_FLASH函数实现的,而最终是用到页写函数norflash_write_page,在前面也对页写时序进行了分析,现在看一下代码:
  1. /**
  2. * @brief        SPI在一页(0~65535)内写入少于256个字节的数据
  3. *   @note      在指定地址开始写入最大256字节的数据
  4. * @param        pbuf    : 数据存储区
  5. * @param        addr    : 开始写入的地址(最大32bit)
  6. * @param        datalen: 要写入的字节数(最大256),该数不应该超过该页的剩余字节数!!!
  7. * @retval       无
  8. */
  9. static voidnorflash_write_page(uint8_t *pbuf, uint32_t addr, uint16_t datalen)
  10. {
  11.     uint16_t i;
  12.    norflash_write_enable();    /* 写使能 */
  13.     NORFLASH_CS(0);
  14.     spi1_read_write_byte(FLASH_PageProgram);    /* 发送写页命令 */
  15.    norflash_send_address(addr);                  /* 发送地址 */
  16.     for (i = 0; i < datalen; i++)
  17.     {
  18.         spi1_read_write_byte(pbuf);            /* 循环写入 */
  19.     }
  20.     NORFLASH_CS(1);
  21.    norflash_wait_busy();       /* 等待写入结束 */
  22. }
复制代码
在页写功能的代码中,先发送写使能命令,才发送页写命令,然后发送写入的地址,再把写入的内容通过一个for循环写入,发送完后拉高片选CS引脚结束通信,等待flash内部写入结束。检测flash内部的状态可以通过查看NM25Qxx状态寄存器1的位0。在这里科普一下NM25Qxx的状态寄存器,可以通过寄存器相关位判断NM25Qxx的状态,下面是NM25Qxx状态寄存器表:
QQ截图20230814152522.png
表37.3.3.1 NM25Qxx状态寄存器表

我们也定义了一个函数norflash_read_sr,去读取NM25Qxx状态寄存器的值,这里就不列出来了,主要实现的方式也是老套路:根据传参判断需要获取的是哪个状态寄存器,然后拉低片选线,调用spi1_read_write_byte函数发送该寄存器的命令,然后通过发送一字节空数据获取读取到的数据,最后拉高片选线,函数返回读取到的值。

在norflash_write_page函数的基础上,增加了norflash_write_nocheck函数进行封装解决写入字节可能大于该页剩下的字节数问题,方便解决写入错误问题,其代码如下:
  1. /**
  2. * @brief       无检验写SPI FLASH
  3. *   @note      必须确保所写的地址范围内的数据全部为0XFF,否则在非0XFF处写入的数据将失败!
  4. *                具有自动换页功能
  5. *                在指定地址开始写入指定长度的数据,但是要确保地址不越界!
  6. *
  7. * @param        pbuf    : 数据存储区
  8. * @param        addr    : 开始写入的地址(最大32bit)
  9. * @param        datalen: 要写入的字节数(最大65535)
  10. * @retval       无
  11. */
  12. static voidnorflash_write_nocheck(uint8_t *pbuf, uint32_t addr,
  13. uint16_t datalen)
  14. {
  15.     uint16_t pageremain;
  16.     pageremain = 256 - addr % 256;  /* 单页剩余的字节数 */
  17.     if (datalen <= pageremain)       /* 不大于256个字节 */
  18.     {
  19.         pageremain = datalen;
  20.     }
  21.     while (1)
  22.     {
  23.     /* 当写入字节比页内剩余地址还少的时候, 一次性写完
  24.      * 当写入直接比页内剩余地址还多的时候, 先写完整个页内剩余地址, 然后根据剩余长度进行不同处理
  25.      */
  26.        norflash_write_page(pbuf, addr, pageremain);
  27.         if (datalen == pageremain)   /* 写入结束了 */
  28.         {
  29.             break;
  30.         }
  31.         else     /* datalen> pageremain */
  32.         {
  33.             pbuf += pageremain;/* pbuf指针地址偏移,前面已经写了pageremain字节 */
  34.             addr += pageremain;      /* 写地址偏移,前面已经写了pageremain字节 */
  35.             datalen-= pageremain;    /* 写入总长度减去已经写入了的字节数 */
  36.             if (datalen > 256)        /* 剩余数据还大于一页,可以一次写一页 */
  37.             {
  38.                pageremain = 256;     /* 一次可以写入256个字节 */
  39.             }
  40.             else                      /* 剩余数据小于一页,可以一次写完 */
  41.             {
  42.                pageremain = datalen; /* 不够256个字节了 */
  43.             }
  44.         }
  45.     }
  46. }
复制代码

上面函数的实现主要是逻辑处理,通过判断传参中的写入字节的长度与单页剩余的字节数,来决定是否是需要在新页写入剩下的字节。这里需要大家自行理解一下。通过调用该函数实现了norflash_write的功能。
下面简单介绍一下擦除函数norflash_erase_sector,前面工作时序中也有对此描述,现在就来看一下代码:
  1. /**
  2. * @brief       擦除一个扇区
  3. *   @note     注意,这里是扇区地址,不是字节地址!!
  4. *               擦除一个扇区的最少时间:150ms
  5. *
  6. * @param       saddr : 扇区地址 根据实际容量设置
  7. * @retval      无
  8. */
  9. voidnorflash_erase_sector(uint32_t saddr)
  10. {
  11.     saddr *= 4096;
  12.    norflash_write_enable();                    /* 写使能 */
  13.    norflash_wait_busy();                        /* 等待空闲 */
  14.     NORFLASH_CS(0);
  15.     spi1_read_write_byte(FLASH_SectorErase);    /* 发送写页命令 */
  16.    norflash_send_address(saddr);               /* 发送地址 */
  17.     NORFLASH_CS(1);
  18.    norflash_wait_busy();                         /* 等待扇区擦除完成 */
  19. }
复制代码
该代码也是老套路,通过发送擦除指令实现擦除功能,要注意的是使用扇区擦除指令前,需要先发送写使能指令,拉低片选线,发送扇区擦除指令之后,发送擦除的扇区地址,实现擦除,最后拉高片选线结束通信。在函数最后通过读取寄存器状态的函数,等待扇区擦除完成。

3. main.c代码
在main.c里面编写如下代码:
  1. const uint8_t g_text_buf[] = {"STM32 SPITEST"};   /* 要写到FLASH的字符串数组 */
  2. #define TEXT_SIZE sizeof(g_text_buf)   /* TEXT字符串长度 */
  3. int main(void)
  4. {
  5.     uint8_t key;
  6.     uint16_t i = 0;
  7.     uint8_tdatatemp[TEXT_SIZE];
  8.     uint32_tflashsize;
  9.     uint16_t id = 0;
  10.     HAL_Init();                             /* 初始化HAL库 */
  11.    sys_stm32_clock_init(336, 8, 2, 7); /* 设置时钟, 168Mhz */
  12.     delay_init(168);                       /* 延时初始化 */
  13.     usart_init(115200);                    /* 串口初始化为115200 */
  14.     usmart_dev.init(84);                   /* 初始化USMART */
  15.     led_init();                             /* 初始化LED */
  16.     lcd_init();                              /* 初始化LCD */
  17.     key_init();                              /* 初始化按键 */
  18. norflash_init();                        /* 初始化NORFLASH */
  19.     lcd_show_string(30,  50, 200, 16, 16, "STM32", RED);
  20.     lcd_show_string(30,  70, 200, 16, 16, "SPITEST", RED);
  21.     lcd_show_string(30,  90, 200, 16, 16, "ATOM@ALIENTEK", RED);
  22.     lcd_show_string(30, 110, 200, 16, 16, "KEY1:Write KEY0:Read", RED);
  23.     id = norflash_read_id();            /* 读取FLASH ID */
  24.     while ((id == 0) || (id == 0XFFFF)) /* 检测不到FLASH芯片 */
  25.     {
  26.        lcd_show_string(30, 130, 200, 16, 16, "FLASH CheckFailed!", RED);
  27.         delay_ms(500);
  28.        lcd_show_string(30, 130, 200, 16, 16, "PleaseCheck!      ", RED);
  29.         delay_ms(500);
  30.         LED0_TOGGLE();                   /* LED0闪烁 */
  31.     }
  32.     lcd_show_string(30, 130, 200, 16, 16, "SPI FLASH Ready!", BLUE);
  33. flashsize = 16 * 1024 * 1024;       /* FLASH 大小为16M字节 */
  34.     while (1)
  35.     {
  36.         key = key_scan(0);
  37.         if (key == KEY1_PRES)            /* KEY1按下,写入 */
  38.         {   /* 从倒数第100个地址处开始, 写入SIZE长度的数据 */
  39.            lcd_fill(0, 150, 239, 319, WHITE);   /* 清除半屏 */
  40.            lcd_show_string(30, 150, 200, 16, 16, "Start WriteFLASH....", BLUE);
  41.             sprintf((char *)datatemp, "%s%d", (char *)g_text_buf, i);
  42.            norflash_write((uint8_t *)datatemp, flashsize - 100, TEXT_SIZE);
  43.            lcd_show_string(30, 150, 200, 16, 16, "FLASH WriteFinished!", BLUE);
  44.         }
  45.         if (key == KEY0_PRES) /* KEY0按下,读取字符串并显示 */
  46.         {   /* 从倒数第100个地址处开始,读出SIZE个字节 */
  47.            lcd_show_string(30, 150, 200, 16, 16, "Start ReadFLASH...", BLUE);
  48.            norflash_read(datatemp, flashsize - 100, TEXT_SIZE);
  49.            lcd_show_string(30, 150, 200, 16, 16, "The DataReaded Is:   ", BLUE);
  50.            lcd_show_string(30, 170, 200, 16, 16, (char *)datatemp, BLUE);
  51.         }
  52.         i++;
  53.         if (i == 20)
  54.         {
  55.            LED0_TOGGLE(); /* LED0闪烁 */
  56.             i = 0;
  57.         }
  58.         delay_ms(10);
  59.     }
  60. }
复制代码

在main函数前面,我们定义了g_text_buf数组,用于存放要写入到FLASH的字符串。main函数代码和IIC实验那部分代码大同小异,具体流程大致是:在完成系统级和用户级初始化工作后,读取FLASH的ID,然后通过KEY0去读取倒数第100个地址处开始的数据并把数据显示在LCD上;另外还可以通过KEY1去倒数第100个地址处写入g_text_buf数据并在LCD界面中显示传输中,完成后并显示“FLASH WriteFinished!”。

37.4 下载验证
将程序下载到开发板后,可以看到LED0不停的闪烁,提示程序已经在运行了。LCD显示的内容如图37.4.1所示:     
image029.png
图37.4.1 SPI实验程序运行效果图

通过先按下KEY1写入数据,然后再按KEY0读取数据,得到如图37.4.2所示:
image031.png
图37.4.2 操作后的显示效果图

程序在开机的时候会检测norflash是否存在,如果不存在则会在TFTLCD 模块上显示错误信息,同时LED0慢闪。大家可以通过跳线帽把PB4和PB5短接就可以看到报错了。

该实验还支持USMART,在这里我们加入了norflash_read_id和norflash_erase_chip以及norflash_erase_sector函数。可以通过USMART调用norflash_read_id函数去读取SPI_FLASH的ID,也可以调用另外两个擦除函数。需要注意的是假如调用了norflash_erase_chip函数将会对整个SPI_FLASH进行擦除,一般情况不建议对整个SPI_FLASH进行擦除,因为会导致字库和综合例程所需要的系统文件全部丢失。
正点原子逻辑分析仪DL16劲爆上市
回复

使用道具 举报

0

主题

4

帖子

0

精华

新手入门

积分
12
金钱
12
注册时间
2023-11-21
在线时间
3 小时
发表于 2024-5-24 17:33:23 | 显示全部楼层
本帖最后由 huqiaomei 于 2024-5-24 17:34 编辑

这个SPI读写速度中speed的释义中2256应该是256,假如speed = 128,SPI速度真的是PCLK1 / (2的(128+1)次方)吗?2的128次方非常大哇
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则



关闭

原子哥极力推荐上一条 /2 下一条

正点原子公众号

QQ|手机版|OpenEdv-开源电子网 ( 粤ICP备12000418号-1 )

GMT+8, 2024-11-25 08:11

Powered by OpenEdv-开源电子网

© 2001-2030 OpenEdv-开源电子网

快速回复 返回顶部 返回列表